energy_operators.py 6.01 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import absolute_import, division, print_function

Philipp Arras's avatar
Philipp Arras committed
21
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
22
23
from ..compat import *
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
24
25
26
from ..field import Field
from ..linearization import Linearization
from ..sugar import makeOp
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
28
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
29
from .sandwich_operator import SandwichOperator
Martin Reinecke's avatar
Martin Reinecke committed
30
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
31
32
33
34
35
36
37
38
39
40
41


class EnergyOperator(Operator):
    _target = DomainTuple.scalar_domain()


class SquaredNormOperator(EnergyOperator):
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
42
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
43
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
44
            jac = VdotOperator(2*x.val)(x.jac)
45
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
46
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
50
51
52
53
54


class QuadraticFormOperator(EnergyOperator):
    def __init__(self, op):
        from .endomorphic_operator import EndomorphicOperator
        if not isinstance(op, EndomorphicOperator):
            raise TypeError("op must be an EndomorphicOperator")
        self._op = op
Martin Reinecke's avatar
Martin Reinecke committed
55
        self._domain = op.domain
Martin Reinecke's avatar
Martin Reinecke committed
56
57
58

    def apply(self, x):
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
59
60
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
61
            val = Field.scalar(0.5*x.val.vdot(t1))
62
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
63
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77


class GaussianEnergy(EnergyOperator):
    def __init__(self, mean=None, covariance=None, domain=None):
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Martin Reinecke's avatar
Martin Reinecke committed
78
79
80
81
        if covariance is None:
            self._op = SquaredNormOperator(self._domain).scale(0.5)
        else:
            self._op = QuadraticFormOperator(covariance.inverse)
Martin Reinecke's avatar
Martin Reinecke committed
82
83
84
85
86
87
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
        if self._domain is None:
            self._domain = newdom
        else:
Martin Reinecke's avatar
Martin Reinecke committed
88
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
92
                raise ValueError("domain mismatch")

    def apply(self, x):
        residual = x if self._mean is None else x-self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
93
        res = self._op(residual).real
94
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
95
96
97
98
99
100
101
102
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
    def __init__(self, op, d):
        self._op, self._d = op, d
Martin Reinecke's avatar
Martin Reinecke committed
103
        self._domain = d.domain
Martin Reinecke's avatar
Martin Reinecke committed
104
105
106
107
108

    def apply(self, x):
        x = self._op(x)
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
109
            return Field.scalar(res)
110
111
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
112
113
114
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

115

116
117
118
119
120
121
122
class InverseGammaLikelihood(EnergyOperator):
    def __init__(self, op, d):
        self._op, self._d = op, d
        self._domain = d.domain

    def apply(self, x):
        x = self._op(x)
Philipp Frank's avatar
Philipp Frank committed
123
        res = 0.5*(x.log().sum() + (1./x).vdot(self._d))
124
125
        if not isinstance(x, Linearization):
            return Field.scalar(res)
126
127
        if not x.want_metric:
            return res
128
129
130
131
        metric = SandwichOperator.make(x.jac, makeOp(0.5/(x.val**2)))
        return res.add_metric(metric)


Martin Reinecke's avatar
Martin Reinecke committed
132
133
134
135
class BernoulliEnergy(EnergyOperator):
    def __init__(self, p, d):
        self._p = p
        self._d = d
Martin Reinecke's avatar
Martin Reinecke committed
136
        self._domain = d.domain
Martin Reinecke's avatar
Martin Reinecke committed
137
138
139
140
141

    def apply(self, x):
        x = self._p(x)
        v = x.log().vdot(-self._d) - (1.-x).log().vdot(1.-self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
142
            return Field.scalar(v)
143
144
        if not x.want_metric:
            return v
Martin Reinecke's avatar
Martin Reinecke committed
145
146
147
148
149
150
151
152
153
154
        met = makeOp(1./(x.val*(1.-x.val)))
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


class Hamiltonian(EnergyOperator):
    def __init__(self, lh, ic_samp=None):
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
155
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
156
157

    def apply(self, x):
158
159
        if (self._ic_samp is None or not isinstance(x, Linearization) or
                not x.want_metric):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
160
            return self._lh(x)+self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
161
        else:
162
            lhx, prx = self._lh(x), self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
163
164
165
166
167
168
169
170
171
172
173
174
175
            mtr = SamplingEnabler(lhx.metric, prx.metric.inverse,
                                  self._ic_samp, prx.metric.inverse)
            return (lhx+prx).add_metric(mtr)


class SampledKullbachLeiblerDivergence(EnergyOperator):
    def __init__(self, h, res_samples):
        """
        # MR FIXME: does h have to be a Hamiltonian? Couldn't it be any energy?
        h: Hamiltonian
        N: Number of samples to be used
        """
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
176
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
177
178
179
        self._res_samples = tuple(res_samples)

    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
180
181
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap) * (1./len(self._res_samples))