test_power.py 9.41 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

import unittest
import nifty4 as ift
import numpy as np
from itertools import product
from test.common import expand
from numpy.testing import assert_allclose


27
class Energy_Tests(unittest.TestCase):
Philipp Arras's avatar
Philipp Arras committed
28
    @expand(product([ift.RGSpace(64, distances=.789),
29
30
31
32
                     ift.RGSpace([32, 32], distances=.789)],
                    [132, 42, 3]))
    def testLinearPower(self, space, seed):
        np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
33
34
35
36
37
38
39
40
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

41
42
43
44
45
46
        def pspec(k): return 64 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        tau0 = ift.log(pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal', std=.01)
        N = ift.DiagonalOperator(n**2)
Philipp Arras's avatar
Philipp Arras committed
47
        s = xi * A
Martin Reinecke's avatar
Martin Reinecke committed
48
        Instrument = ift.ScalingOperator(1., space)
Philipp Arras's avatar
Philipp Arras committed
49
50
51
52
53
        R = Instrument * ht
        d = R(s) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
54
        eps = 1e-7
Philipp Arras's avatar
Philipp Arras committed
55
56
57
58
59
60
61
62
63
64
65
66
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)

        D = ift.library.WienerFilterEnergy(position=s, d=d, R=R, N=N, S=S,
                                           inverter=inverter).curvature

67
68
        w = ift.Field.zeros_like(tau0)

Philipp Arras's avatar
Philipp Arras committed
69
        energy0 = ift.library.CriticalPowerEnergy(
70
            position=tau0, m=s, inverter=inverter, w=w, samples=10)
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
71
        energy1 = energy0.at(tau1)
Philipp Arras's avatar
Philipp Arras committed
72
73
74

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
75
        tol = 1e-4
Philipp Arras's avatar
Philipp Arras committed
76
77
78
79
        assert_allclose(a, b, rtol=tol, atol=tol)

    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
80
81
82
83
                    [ift.library.Exponential, ift.library.Linear],
                    [132, 42, 3]))
    def testNonlinearPower(self, space, nonlinearity, seed):
        np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
84
85
        f = nonlinearity()
        dim = len(space.shape)
86
87
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
Philipp Arras's avatar
Philipp Arras committed
88
89
90
91
92
93
94
95
96
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        tau0 = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(tau0))
        n = ift.Field.from_random(domain=space, random_type='normal')
97
        s = ht(xi * A)
Martin Reinecke's avatar
Martin Reinecke committed
98
        R = ift.ScalingOperator(10., space)
Philipp Arras's avatar
Philipp Arras committed
99
100
101
102
103
104
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
        d = R(f(s)) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
105
        eps = 1e-7
Philipp Arras's avatar
Philipp Arras committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)
        D = ift.library.NonlinearWienerFilterEnergy(
            position=xi,
            d=d,
            Instrument=R,
            nonlinearity=f,
            power=A,
            N=N,
            S=S,
122
            ht=ht,
Philipp Arras's avatar
Philipp Arras committed
123
124
125
126
127
            inverter=inverter).curvature

        energy0 = ift.library.NonlinearPowerEnergy(
            position=tau0,
            d=d,
Philipp Arras's avatar
Philipp Arras committed
128
            xi=xi,
Philipp Arras's avatar
Philipp Arras committed
129
130
131
132
            D=D,
            Instrument=R,
            Projection=P,
            nonlinearity=f,
133
            ht=ht,
Philipp Arras's avatar
Philipp Arras committed
134
            N=N,
135
            samples=10)
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
136
        energy1 = energy0.at(tau1)
Philipp Arras's avatar
Philipp Arras committed
137
138
139

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
140
        tol = 1e-4
Philipp Arras's avatar
Philipp Arras committed
141
        assert_allclose(a, b, rtol=tol, atol=tol)
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185


class Curvature_Tests(unittest.TestCase):
    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
                    [132, 42, 3]))
    def testLinearPowerCurvature(self, space, seed):
        np.random.seed(seed)
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 64 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        tau0 = ift.log(pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal', std=.01)
        N = ift.DiagonalOperator(n**2)
        s = xi * A
        diag = ift.Field.ones(space)
        Instrument = ift.DiagonalOperator(diag)
        R = Instrument * ht
        d = R(s) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
        eps = 1e-7
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)

        D = ift.library.WienerFilterEnergy(position=s, d=d, R=R, N=N, S=S,
                                           inverter=inverter).curvature

        energy0 = ift.library.CriticalPowerEnergy(
186
            position=tau0, m=s, inverter=inverter, samples=10)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

        gradient0 = energy0.gradient
        gradient1 = energy0.at(tau1).gradient

        a = (gradient1 - gradient0) / eps
        b = energy0.curvature(direction)
        tol = 1e-5
        assert_allclose(a.val, b.val, rtol=tol, atol=tol)

    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
                    [ift.library.Exponential, ift.library.Linear],
                    [132, 42, 3]))
    def testNonlinearPowerCurvature(self, space, nonlinearity, seed):
        np.random.seed(seed)
        f = nonlinearity()
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        tau0 = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(tau0))
        n = ift.Field.from_random(domain=space, random_type='normal')
        s = ht(xi * A)
        diag = ift.Field.ones(space) * 10
        R = ift.DiagonalOperator(diag)
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
        d = R(f(s)) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
        eps = 1e-7
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

        S = ift.create_power_operator(hspace, power_spectrum=lambda k: 1.)
        D = ift.library.NonlinearWienerFilterEnergy(
            position=xi,
            d=d,
            Instrument=R,
            nonlinearity=f,
            power=A,
            N=N,
            S=S,
            ht=ht,
            inverter=inverter).curvature

        energy0 = ift.library.NonlinearPowerEnergy(
            position=tau0,
            d=d,
Philipp Arras's avatar
Philipp Arras committed
247
            xi=xi,
248
249
250
251
252
253
            D=D,
            Instrument=R,
            Projection=P,
            nonlinearity=f,
            ht=ht,
            N=N,
254
            samples=10)
255
256
257
258
259
260

        gradient0 = energy0.gradient
        gradient1 = energy0.at(tau1).gradient

        a = (gradient1 - gradient0) / eps
        b = energy0.curvature(direction)
Philipp Arras's avatar
Philipp Arras committed
261
        tol = 1e-3
262
        assert_allclose(a.val, b.val, rtol=tol, atol=tol)