sugar.py 19.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
14
# Copyright(C) 2013-2020 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

18
import sys
19
from time import time
20

21
import numpy as np
22

23
from . import pointwise, utilities
24
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
25
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
26
from .field import Field
27
from .logger import logger
Martin Reinecke's avatar
Martin Reinecke committed
28
29
from .multi_domain import MultiDomain
from .multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
30
from .operators.block_diagonal_operator import BlockDiagonalOperator
Martin Reinecke's avatar
Martin Reinecke committed
31
from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
32
from .operators.distributors import PowerDistributor
33
from .operators.operator import Operator
34
from .operators.sampling_enabler import SamplingDtypeSetter
35
from .operators.scaling_operator import ScalingOperator
Lukas Platz's avatar
Lukas Platz committed
36
from .plot import Plot
37

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
38
39
__all__ = ['PS_field', 'power_analyze', 'create_power_operator',
           'create_harmonic_smoothing_operator', 'from_random',
Martin Reinecke's avatar
Martin Reinecke committed
40
           'full', 'makeField',
41
           'is_fieldlike', 'is_linearization', 'is_operator',
Martin Reinecke's avatar
Martin Reinecke committed
42
           'makeDomain', 'get_signal_variance', 'makeOp', 'domain_union',
Philipp Arras's avatar
Philipp Arras committed
43
           'get_default_codomain', 'single_plot', 'exec_time',
44
           'calculate_position'] + list(pointwise.ptw_dict.keys())
45

46

47
def PS_field(pspace, func):
Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
51
52
53
54
55
    """Convenience function sampling a power spectrum

    Parameters
    ----------
    pspace : PowerSpace
        space at whose `k_lengths` the power spectrum function is evaluated
    func : function taking and returning a numpy.ndarray(float)
        the power spectrum function
Martin Reinecke's avatar
Martin Reinecke committed
56

Martin Reinecke's avatar
Martin Reinecke committed
57
58
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
59
60
    Field
        A field defined on (pspace,) containing the computed function values
Martin Reinecke's avatar
Martin Reinecke committed
61
    """
Martin Reinecke's avatar
Martin Reinecke committed
62
63
    if not isinstance(pspace, PowerSpace):
        raise TypeError
Martin Reinecke's avatar
stage 1    
Martin Reinecke committed
64
    data = func(pspace.k_lengths)
65
    return Field(DomainTuple.make(pspace), data)
Martin Reinecke's avatar
Martin Reinecke committed
66

Martin Reinecke's avatar
Martin Reinecke committed
67

68
69
70
71
def get_signal_variance(spec, space):
    """
    Computes how much a field with a given power spectrum will vary in space

72
    This is a small helper function that computes the expected variance
73
74
75
76
77
78
79
80
    of a harmonically transformed sample of this power spectrum.

    Parameters
    ---------
    spec: method
        a method that takes one k-value and returns the power spectrum at that
        location
    space: PowerSpace or any harmonic Domain
Martin Reinecke's avatar
Martin Reinecke committed
81
82
83
84
        If this function is given a harmonic domain, it creates the naturally
        binned PowerSpace to that domain.
        The field, for which the signal variance is then computed, is assumed
        to have this PowerSpace as naturally binned PowerSpace
85
86
87
88
    """
    if space.harmonic:
        space = PowerSpace(space)
    if not isinstance(space, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
89
90
        raise ValueError(
            "space must be either a harmonic space or Power space.")
91
92
93
    field = PS_field(space, spec)
    dist = PowerDistributor(space.harmonic_partner, space)
    k_field = dist(field)
Martin Reinecke's avatar
Martin Reinecke committed
94
    return k_field.weight(2).s_sum()
95

96

97
98
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
99
100
    pd = PowerDistributor(field.domain, power_domain, idx)
    return pd.adjoint_times(field.weight(1)).weight(-1)  # divides by bin size
101
102


Martin Reinecke's avatar
Martin Reinecke committed
103
104
# MR FIXME: this function is not well suited for analyzing more than one
# subdomain at once, because it allows only one set of binbounds.
105
106
def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
107
    """Computes the power spectrum for a subspace of `field`.
108
109

    Creates a PowerSpace for the space addressed by `spaces` with the given
110
    binning and computes the power spectrum as a :class:`Field` over this
111
    PowerSpace. This can only be done if the subspace to  be analyzed is a
Martin Reinecke's avatar
Martin Reinecke committed
112
113
    harmonic space. The resulting field has the same units as the square of the
    initial field.
114
115
116

    Parameters
    ----------
Philipp Arras's avatar
Fixups    
Philipp Arras committed
117
    field : Field
118
        The field to be analyzed
Martin Reinecke's avatar
Martin Reinecke committed
119
120
121
    spaces : None or int or tuple of int, optional
        The indices of subdomains for which the power spectrum shall be
        computed.
Martin Reinecke's avatar
Martin Reinecke committed
122
        If None, all subdomains will be converted.
123
        (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
124
    binbounds : None or array-like, optional
125
        Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
126
127
        if binbounds is None : bins are inferred.
    keep_phase_information : bool, optional
128
        If False, return a real-valued result containing the power spectrum
129
        of `field`.
130
        If True, return a complex-valued result whose real component
131
132
133
        contains the power spectrum computed from the real part of `field`,
        and whose imaginary component contains the power
        spectrum computed from the imaginary part of `field`.
134
135
136
137
138
139
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
Philipp Arras's avatar
Fixups    
Philipp Arras committed
140
    Field
141
        The output object. Its domain is a PowerSpace and it contains
Martin Reinecke's avatar
Martin Reinecke committed
142
        the power spectrum of `field`.
143
144
145
146
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
147
148
            logger.warning("WARNING: Field has a space in `domain` which is "
                           "neither harmonic nor a PowerSpace.")
149

150
    spaces = utilities.parse_spaces(spaces, len(field.domain))
151
152
153
154

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

Martin Reinecke's avatar
Martin Reinecke committed
155
    field_real = not utilities.iscomplextype(field.dtype)
156
157
158
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

159
160
161
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
162
163
164
165
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
166
167

    for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
168
        parts = [_single_power_analyze(part, space_index, binbounds)
169
170
171
172
173
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
174
def _create_power_field(domain, power_spectrum):
Philipp Arras's avatar
Philipp Arras committed
175
    if not callable(power_spectrum):  # we have a Field defined on a PowerSpace
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
176
177
178
179
180
181
182
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
183
        fp = power_spectrum
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
184
185
    else:
        power_domain = PowerSpace(domain)
186
        fp = PS_field(power_domain, power_spectrum)
187

Martin Reinecke's avatar
Martin Reinecke committed
188
    return PowerDistributor(domain, power_domain)(fp)
189

190

191
def create_power_operator(domain, power_spectrum, space=None):
192
    """Creates a diagonal operator with the given power spectrum.
193

Philipp Arras's avatar
Philipp Arras committed
194
    Constructs a diagonal operator that is defined on the specified domain.
195

196
197
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
198
    domain : Domain, tuple of Domain or DomainTuple
Philipp Arras's avatar
Philipp Arras committed
199
        Domain on which the power operator shall be defined.
Martin Reinecke's avatar
Martin Reinecke committed
200
201
    power_spectrum : callable or Field
        An object that contains the power spectrum as a function of k.
Martin Reinecke's avatar
Martin Reinecke committed
202
    space : int
Martin Reinecke's avatar
Martin Reinecke committed
203
        the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
204

205
206
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
207
208
    DiagonalOperator
        An operator that implements the given power spectrum.
209
    """
Martin Reinecke's avatar
Martin Reinecke committed
210
    domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
211
    space = utilities.infer_space(domain, space)
Martin Reinecke's avatar
Martin Reinecke committed
212
213
    field = _create_power_field(domain[space], power_spectrum)
    return DiagonalOperator(field, domain, space)
214

215

216
def create_harmonic_smoothing_operator(domain, space, sigma):
Martin Reinecke's avatar
Martin Reinecke committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    """Creates an operator which smoothes a subspace of a harmonic domain.

    Parameters
    ----------
    domain: DomainTuple
        The total domain and target of the operator
    space : int
        the index of the subspace on which the operator acts.
        This must be a harmonic space
    sigma : float
        The sigma of the Gaussian smoothing kernel

    Returns
    -------
    DiagonalOperator
        The requested smoothing operator
    """
234
235
236
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
237
238
239


def full(domain, val):
Martin Reinecke's avatar
Martin Reinecke committed
240
241
242
243
244
245
246
247
248
249
250
    """Convenience function creating Fields/MultiFields with uniform values.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
    val : scalar value
        the uniform value to be placed into all entries of the result

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
251
252
    Field or MultiField
        The newly created uniform field
Martin Reinecke's avatar
Martin Reinecke committed
253
    """
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
254
255
256
257
258
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.full(domain, val)
    return Field.full(domain, val)


259
def from_random(domain, random_type='normal', dtype=np.float64, **kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
260
261
262
263
264
265
    """Convenience function creating Fields/MultiFields with random values.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
266
267
    random_type : 'pm1', 'normal', or 'uniform'
            The random distribution to use.
Martin Reinecke's avatar
Martin Reinecke committed
268
269
    dtype : type
        data type of the output field (e.g. numpy.float64)
270
271
        If the datatype is complex, each real an imaginary part have
        variance 1.
Martin Reinecke's avatar
Martin Reinecke committed
272
273
274
275
276
    **kwargs : additional parameters for the random distribution
        ('mean' and 'std' for 'normal', 'low' and 'high' for 'uniform')

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
277
278
    Field or MultiField
        The newly created random field
279
280
281

    Notes
    -----
Martin Reinecke's avatar
Martin Reinecke committed
282
283
284
285
    When called with a multi-domain, the individual fields will be drawn in
    alphabetical order of the multi-domain's domain keys. As a consequence,
    renaming these keys may cause the multi-field to be filled with different
    random numbers, even for the same initial RNG state.
Martin Reinecke's avatar
Martin Reinecke committed
286
    """
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
287
    if isinstance(domain, (dict, MultiDomain)):
288
289
        return MultiField.from_random(domain, random_type, dtype, **kwargs)
    return Field.from_random(domain, random_type, dtype, **kwargs)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
290
291


Martin Reinecke's avatar
Martin Reinecke committed
292
def makeField(domain, arr):
Martin Reinecke's avatar
Martin Reinecke committed
293
294
295
296
297
298
299
300
301
302
303
304
    """Convenience function creating Fields/MultiFields from Numpy arrays or
    dicts of Numpy arrays.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
    arr : Numpy array if `domain` corresponds to a `DomainTuple`,
          dictionary of Numpy arrays if `domain` corresponds to a `MultiDomain`

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
305
306
    Field or MultiField
        The newly created random field
Martin Reinecke's avatar
Martin Reinecke committed
307
    """
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
308
    if isinstance(domain, (dict, MultiDomain)):
Martin Reinecke's avatar
Martin Reinecke committed
309
310
        return MultiField.from_raw(domain, arr)
    return Field.from_raw(domain, arr)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
311
312
313


def makeDomain(domain):
Martin Reinecke's avatar
Martin Reinecke committed
314
315
316
317
    """Convenience function creating DomainTuples/MultiDomains Domainoids.

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
318
    domain : Domainoid (can be DomainTuple, MultiDomain, dict, Domain or list of Domains)
Martin Reinecke's avatar
Martin Reinecke committed
319
320
321
322
        the description of the requested (multi-)domain

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
323
324
    DomainTuple or MultiDomain
        The newly created domain object
Martin Reinecke's avatar
Martin Reinecke committed
325
    """
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
326
    if isinstance(domain, (MultiDomain, dict)):
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
327
328
        return MultiDomain.make(domain)
    return DomainTuple.make(domain)
329
330


331
def makeOp(input, dom=None):
Martin Reinecke's avatar
Martin Reinecke committed
332
333
334
335
336
337
    """Converts a Field or MultiField to a diagonal operator.

    Parameters
    ----------
    input : None, Field or MultiField
        - if None, None is returned.
338
339
        - if Field on scalar-domain, a ScalingOperator with the coefficient
            given by the Field is returned.
Martin Reinecke's avatar
Martin Reinecke committed
340
341
342
343
344
        - if Field, a DiagonalOperator with the coefficients given by this
            Field is returned.
        - if MultiField, a BlockDiagonalOperator with entries given by this
            MultiField is returned.

345
346
347
    dom : DomainTuple or MultiDomain
        if `input` is a scalar, this is used as the operator's domain

Martin Reinecke's avatar
Martin Reinecke committed
348
349
350
351
    Notes
    -----
    No volume factors are applied.
    """
Martin Reinecke's avatar
Martin Reinecke committed
352
353
    if input is None:
        return None
354
    if np.isscalar(input):
Rouven Lemmerz's avatar
Typo    
Rouven Lemmerz committed
355
        if not isinstance(dom, (DomainTuple, MultiDomain)):
356
            raise TypeError("need proper `dom` argument")
357
        return ScalingOperator(dom, input)
358
359
360
    if dom is not None:
        if not dom == input.domain:
            raise ValueError("domain mismatch")
361
    if input.domain is DomainTuple.scalar_domain():
362
        return ScalingOperator(input.domain, input.val[()])
Martin Reinecke's avatar
Martin Reinecke committed
363
364
365
    if isinstance(input, Field):
        return DiagonalOperator(input)
    if isinstance(input, MultiField):
Martin Reinecke's avatar
Martin Reinecke committed
366
        return BlockDiagonalOperator(
Martin Reinecke's avatar
fix    
Martin Reinecke committed
367
            input.domain, {key: makeOp(val) for key, val in input.items()})
Martin Reinecke's avatar
Martin Reinecke committed
368
369
    raise NotImplementedError

Martin Reinecke's avatar
more    
Martin Reinecke committed
370
371

def domain_union(domains):
Martin Reinecke's avatar
Martin Reinecke committed
372
373
374
375
376
377
378
379
    """Computes the union of multiple DomainTuples/MultiDomains.

    Parameters
    ----------
    domains : list of DomainTuple or MultiDomain
        - if DomainTuple, all entries must be equal
        - if MultiDomain, there must not be any conflicting components
    """
Martin Reinecke's avatar
more    
Martin Reinecke committed
380
    if isinstance(domains[0], DomainTuple):
Martin Reinecke's avatar
Martin Reinecke committed
381
        if any(dom != domains[0] for dom in domains[1:]):
Martin Reinecke's avatar
more    
Martin Reinecke committed
382
383
384
385
            raise ValueError("domain mismatch")
        return domains[0]
    return MultiDomain.union(domains)

Martin Reinecke's avatar
more    
Martin Reinecke committed
386

387
388
389
390
391
392
393
394
395
396
# Pointwise functions

_current_module = sys.modules[__name__]

for f in pointwise.ptw_dict.keys():
    def func(f):
        def func2(x, *args, **kwargs):
           return x.ptw(f, *args, **kwargs)
        return func2
    setattr(_current_module, f, func(f))
Martin Reinecke's avatar
Martin Reinecke committed
397
398


399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
def get_default_codomain(domainoid, space=None):
    """For `RGSpace`, returns the harmonic partner domain.
    For `DomainTuple`, returns a copy of the object in which the domain
    indexed by `space` is substituted by its harmonic partner domain.
    In this case, if `space` is None, it is set to 0 if the `DomainTuple`
    contains exactly one domain.

    Parameters
    ----------
    domain: `RGSpace` or `DomainTuple`
        Domain for which to constuct the default harmonic partner
    space: int
        Optional index of the subdomain to be replaced by its default
        codomain. `domain[space]` must be of class `RGSpace`.
    """
    from .domains.rg_space import RGSpace
415
416
417
    from .domains.hp_space import HPSpace
    from .domains.gl_space import GLSpace
    from .domains.lm_space import LMSpace
418
419
420
421
422
423
    if isinstance(domainoid, RGSpace):
        return domainoid.get_default_codomain()
    if not isinstance(domainoid, DomainTuple):
        raise TypeError(
            'Works only on RGSpaces and DomainTuples containing those')
    space = utilities.infer_space(domainoid, space)
424
425
    if not isinstance(domainoid[space], (RGSpace, HPSpace, GLSpace, LMSpace)):
        raise TypeError("can only codomain structrued spaces")
426
427
428
    ret = [dom for dom in domainoid]
    ret[space] = domainoid[space].get_default_codomain()
    return DomainTuple.make(ret)
Lukas Platz's avatar
Lukas Platz committed
429
430
431
432
433
434
435
436
437
438
439


def single_plot(field, **kwargs):
    """Creates a single plot using `Plot`.
    Keyword arguments are passed to both `Plot.add` and `Plot.output`.
    """
    p = Plot()
    p.add(field, **kwargs)
    if 'title' in kwargs:
        del(kwargs['title'])
    p.output(**kwargs)
440
441
442
443


def exec_time(obj, want_metric=True):
    """Times the execution time of an operator or an energy."""
Philipp Arras's avatar
Philipp Arras committed
444
445
446
    from .linearization import Linearization
    from .minimization.energy import Energy
    from .operators.energy_operators import EnergyOperator
447
448
449
    if isinstance(obj, Energy):
        t0 = time()
        obj.at(0.99*obj.position)
450
        logger.info('Energy.at(): {}'.format(time() - t0))
451
452
453

        t0 = time()
        obj.value
454
        logger.info('Energy.value: {}'.format(time() - t0))
455
456
        t0 = time()
        obj.gradient
457
        logger.info('Energy.gradient: {}'.format(time() - t0))
458
459
        t0 = time()
        obj.metric
460
        logger.info('Energy.metric: {}'.format(time() - t0))
461
462
463

        t0 = time()
        obj.apply_metric(obj.position)
464
        logger.info('Energy.apply_metric: {}'.format(time() - t0))
465
466
467

        t0 = time()
        obj.metric(obj.position)
468
        logger.info('Energy.metric(position): {}'.format(time() - t0))
469
470
    elif isinstance(obj, Operator):
        want_metric = bool(want_metric)
471
        pos = from_random(obj.domain, 'normal')
472
473
        t0 = time()
        obj(pos)
474
        logger.info('Operator call with field: {}'.format(time() - t0))
475
476
477
478

        lin = Linearization.make_var(pos, want_metric=want_metric)
        t0 = time()
        res = obj(lin)
479
        logger.info('Operator call with linearization: {}'.format(time() - t0))
480
481
482
483

        if isinstance(obj, EnergyOperator):
            t0 = time()
            res.gradient
484
            logger.info('Gradient evaluation: {}'.format(time() - t0))
485
486
487
488

            if want_metric:
                t0 = time()
                res.metric(pos)
489
                logger.info('Metric apply: {}'.format(time() - t0))
490
491
    else:
        raise TypeError
Philipp Arras's avatar
Philipp Arras committed
492
493
494
495


def calculate_position(operator, output):
    """Finds approximate preimage of an operator for a given output."""
Philipp Arras's avatar
Philipp Arras committed
496
497
498
499
500
    from .minimization.descent_minimizers import NewtonCG
    from .minimization.iteration_controllers import GradientNormController
    from .minimization.metric_gaussian_kl import MetricGaussianKL
    from .operators.scaling_operator import ScalingOperator
    from .operators.energy_operators import GaussianEnergy, StandardHamiltonian
Philipp Arras's avatar
Philipp Arras committed
501
502
503
504
    if not isinstance(operator, Operator):
        raise TypeError
    if output.domain != operator.target:
        raise TypeError
505
    if isinstance(output, MultiField):
506
        cov = 1e-3*max([np.max(np.abs(vv)) for vv in output.val.values()])**2
Philipp Arras's avatar
Philipp Arras committed
507
508
509
510
511
        invcov = ScalingOperator(output.domain, cov).inverse
        dtype = list(set([ff.dtype for ff in output.values()]))
        if len(dtype) != 1:
            raise ValueError('Only MultiFields with one dtype supported.')
        dtype = dtype[0]
512
    else:
513
        cov = 1e-3*np.max(np.abs(output.val))**2
Philipp Arras's avatar
Philipp Arras committed
514
        dtype = output.dtype
515
    invcov = ScalingOperator(output.domain, cov).inverse
516
517
518
    invcov = SamplingDtypeSetter(invcov, output.dtype)
    invcov = SamplingDtypeSetter(invcov, output.dtype)
    d = output + invcov.draw_sample(from_inverse=True)
Philipp Arras's avatar
Philipp Arras committed
519
    lh = GaussianEnergy(d, invcov) @ operator
Philipp Arras's avatar
Philipp Arras committed
520
521
    H = StandardHamiltonian(
        lh, ic_samp=GradientNormController(iteration_limit=200))
522
    pos = 0.1*from_random(operator.domain)
Philipp Arras's avatar
Philipp Arras committed
523
    minimizer = NewtonCG(GradientNormController(iteration_limit=10, name='findpos'))
Philipp Arras's avatar
Philipp Arras committed
524
    for ii in range(3):
Philipp Arras's avatar
Philipp Arras committed
525
        logger.info(f'Start iteration {ii+1}/3')
526
        kl = MetricGaussianKL.make(pos, H, 3, mirror_samples=True)
Philipp Arras's avatar
Philipp Arras committed
527
528
529
        kl, _ = minimizer(kl)
        pos = kl.position
    return pos
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559


def is_operator(obj):
    """Checks if object is operator-like.

    Note
    ----
    A simple `isinstance(obj, ift.Operator)` does give the expected
    result because, e.g., :class:`~nifty7.field.Field` inherits from
    :class:`~nifty7.operators.operator.Operator`.
    """
    return isinstance(obj, Operator) and obj.val is None and obj.jac is None


def is_linearization(obj):
    """Checks if object is linearization-like."""
    return isinstance(obj, Operator) and obj.val is not None and obj.jac is not None


def is_fieldlike(obj):
    """Checks if object is field-like.

    Note
    ----
    A simple `isinstance(obj, ift.Field)` does give the expected
    result because users might have implemented another class which
    behaves field-like but is not an instance of
    :class:`~nifty7.field.Field`.
    """
    return isinstance(obj, Operator) and obj.val is not None and obj.jac is None