energy_operators.py 15 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
19
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
20
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domain_tuple import DomainTuple
22
from ..multi_domain import MultiDomain
Philipp Arras's avatar
Philipp Arras committed
23
from ..field import Field
24
from ..multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
25
from ..linearization import Linearization
Philipp Arras's avatar
Philipp Arras committed
26
27
from ..sugar import makeDomain, makeOp
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
28
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
29
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
30
from .sandwich_operator import SandwichOperator
31
from .scaling_operator import ScalingOperator
32
from .simple_linear_operators import VdotOperator, FieldAdapter
Martin Reinecke's avatar
Martin Reinecke committed
33
34
35


class EnergyOperator(Operator):
Philipp Arras's avatar
Philipp Arras committed
36
    """Operator which has a scalar domain as target domain.
37

Martin Reinecke's avatar
Martin Reinecke committed
38
    It is intended as an objective function for field inference.
39

Philipp Arras's avatar
Philipp Arras committed
40
41
42
    Examples
    --------
     - Information Hamiltonian, i.e. negative-log-probabilities.
Martin Reinecke's avatar
Martin Reinecke committed
43
     - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler
Philipp Arras's avatar
Philipp Arras committed
44
       divergence.
45
    """
Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
    _target = DomainTuple.scalar_domain()


49
50
class Squared2NormOperator(EnergyOperator):
    """Computes the square of the L2-norm of the output of an operator.
51

Philipp Arras's avatar
Philipp Arras committed
52
53
54
    Parameters
    ----------
    domain : Domain, DomainTuple or tuple of Domain
55
        Domain of the operator in which the L2-norm shall be computed.
Martin Reinecke's avatar
Martin Reinecke committed
56
    """
Philipp Arras's avatar
Philipp Arras committed
57

Martin Reinecke's avatar
Martin Reinecke committed
58
59
60
61
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
62
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
63
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
64
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
65
            jac = VdotOperator(2*x.val)(x.jac)
66
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
67
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
68

Martin Reinecke's avatar
Martin Reinecke committed
69

Martin Reinecke's avatar
Martin Reinecke committed
70
class QuadraticFormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
71
    """Computes the L2-norm of a Field or MultiField with respect to a
72
    specific kernel given by `endo`.
Philipp Arras's avatar
Philipp Arras committed
73
74
75

    .. math ::
        E(f) = \\frac12 f^\\dagger \\text{endo}(f)
76
77
78

    Parameters
    ----------
Philipp Arras's avatar
Philipp Arras committed
79
    endo : EndomorphicOperator
80
         Kernel of the quadratic form
Martin Reinecke's avatar
Martin Reinecke committed
81
    """
Philipp Arras's avatar
Philipp Arras committed
82
83

    def __init__(self, endo):
Martin Reinecke's avatar
Martin Reinecke committed
84
        from .endomorphic_operator import EndomorphicOperator
Philipp Arras's avatar
Philipp Arras committed
85
        if not isinstance(endo, EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
86
            raise TypeError("op must be an EndomorphicOperator")
Philipp Arras's avatar
Philipp Arras committed
87
88
        self._op = endo
        self._domain = endo.domain
Martin Reinecke's avatar
Martin Reinecke committed
89
90

    def apply(self, x):
91
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
92
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
93
94
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
95
            val = Field.scalar(0.5*x.val.vdot(t1))
96
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
97
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
98

Philipp Arras's avatar
Philipp Arras committed
99

100
class VariableCovarianceGaussianEnergy(EnergyOperator):
Reimar Leike's avatar
Reimar Leike committed
101
    """Computes the negative log pdf of a Gaussian with unknown covariance.
102

Reimar Leike's avatar
Reimar Leike committed
103
    The covariance is assumed to be diagonal.
104
105

    .. math ::
Reimar Leike's avatar
Reimar Leike committed
106
        E(s,D) = - \\log G(s, D) = 0.5 (s)^\\dagger D^{-1} (s) + 0.5 tr log(D),
107
108

    an information energy for a Gaussian distribution with residual s and
109
    diagonal covariance D.
Reimar Leike's avatar
Reimar Leike committed
110
111
    The domain of this energy will be a MultiDomain with two keys,
    the target will be the scalar domain.
112
113
114

    Parameters
    ----------
115
    domain : Domain, DomainTuple, tuple of Domain
Reimar Leike's avatar
Reimar Leike committed
116
        domain of the residual and domain of the covariance diagonal.
117

118
    residual : key
Philipp Arras's avatar
Philipp Arras committed
119
        Residual key of the Gaussian.
120

Philipp Arras's avatar
Philipp Arras committed
121
    inverse_covariance : key
122
        Inverse covariance diagonal key of the Gaussian.
123
124
    """

Philipp Arras's avatar
Philipp Arras committed
125
126
127
128
129
    def __init__(self, domain, residual_key, inverse_covariance_key):
        self._r = str(residual_key)
        self._icov = str(inverse_covariance_key)
        dom = DomainTuple.make(domain)
        self._domain = MultiDomain.make({self._r: dom, self._icov: dom})
130
131
132

    def apply(self, x):
        self._check_input(x)
Philipp Arras's avatar
Fixup    
Philipp Arras committed
133
        res0 = x[self._r].vdot(x[self._r]*x[self._icov]).real
Philipp Arras's avatar
Philipp Arras committed
134
135
136
137
        res1 = x[self._icov].log().sum()
        res = 0.5*(res0-res1)
        mf = {self._r: x.val[self._icov], self._icov: .5*x.val[self._icov]**(-2)}
        metric = makeOp(MultiField.from_dict(mf))
Philipp Arras's avatar
Fixup    
Philipp Arras committed
138
        return res.add_metric(SandwichOperator.make(x.jac, metric))
139

Martin Reinecke's avatar
Martin Reinecke committed
140
141

class GaussianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
142
    """Computes a negative-log Gaussian.
143

Philipp Arras's avatar
Philipp Arras committed
144
    Represents up to constants in :math:`m`:
Martin Reinecke's avatar
Martin Reinecke committed
145

Philipp Arras's avatar
Philipp Arras committed
146
147
    .. math ::
        E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m),
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
148

Philipp Arras's avatar
Philipp Arras committed
149
150
    an information energy for a Gaussian distribution with mean m and
    covariance D.
151

Philipp Arras's avatar
Philipp Arras committed
152
153
154
155
    Parameters
    ----------
    mean : Field
        Mean of the Gaussian. Default is 0.
156
157
    inverse_covariance : LinearOperator
        Inverse covariance of the Gaussian. Default is the identity operator.
Philipp Arras's avatar
Fixup    
Philipp Arras committed
158
    domain : Domain, DomainTuple, tuple of Domain or MultiDomain
Philipp Arras's avatar
Philipp Arras committed
159
160
161
162
163
164
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified

    Note
    ----
    At least one of the arguments has to be provided.
Martin Reinecke's avatar
Martin Reinecke committed
165
    """
Martin Reinecke's avatar
Martin Reinecke committed
166

167
    def __init__(self, mean=None, inverse_covariance=None, domain=None):
Martin Reinecke's avatar
Martin Reinecke committed
168
169
        if mean is not None and not isinstance(mean, (Field, MultiField)):
            raise TypeError
170
        if inverse_covariance is not None and not isinstance(inverse_covariance, LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
171
172
            raise TypeError

Martin Reinecke's avatar
Martin Reinecke committed
173
174
175
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
176
177
        if inverse_covariance is not None:
            self._checkEquivalence(inverse_covariance.domain)
Martin Reinecke's avatar
Martin Reinecke committed
178
179
180
181
182
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
183
        if inverse_covariance is None:
184
            self._op = Squared2NormOperator(self._domain).scale(0.5)
Martin Reinecke's avatar
Martin Reinecke committed
185
        else:
186
187
            self._op = QuadraticFormOperator(inverse_covariance)
        self._icov = None if inverse_covariance is None else inverse_covariance
Martin Reinecke's avatar
Martin Reinecke committed
188
189

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
190
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
191
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
192
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
193
        else:
Philipp Arras's avatar
Philipp Arras committed
194
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
195
196
197
                raise ValueError("domain mismatch")

    def apply(self, x):
198
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
199
        residual = x if self._mean is None else x - self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
200
        res = self._op(residual).real
201
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
202
203
204
205
206
207
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
208
209
    """Computes likelihood Hamiltonians of expected count field constrained by
    Poissonian count data.
210

Philipp Arras's avatar
Philipp Arras committed
211
    Represents up to an f-independent term :math:`log(d!)`:
212

Philipp Arras's avatar
Philipp Arras committed
213
214
    .. math ::
        E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f),
215

Philipp Arras's avatar
Philipp Arras committed
216
    where f is a :class:`Field` in data space with the expectation values for
Martin Reinecke's avatar
Martin Reinecke committed
217
    the counts.
Philipp Arras's avatar
Philipp Arras committed
218
219
220
221
222
223

    Parameters
    ----------
    d : Field
        Data field with counts. Needs to have integer dtype and all field
        values need to be non-negative.
Martin Reinecke's avatar
Martin Reinecke committed
224
    """
Philipp Arras's avatar
Philipp Arras committed
225

226
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
227
228
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
229
        if np.any(d.val < 0):
Philipp Arras's avatar
Philipp Arras committed
230
            raise ValueError
231
232
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
233
234

    def apply(self, x):
235
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
236
        res = x.sum()
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
237
        tmp = res.val.val if isinstance(res, Linearization) else res
Martin Reinecke's avatar
Martin Reinecke committed
238
239
        # if we have no infinity here, we can continue with the calculation;
        # otherwise we know that the result must also be infinity
Martin Reinecke's avatar
Martin Reinecke committed
240
        if not np.isinf(tmp):
Martin Reinecke's avatar
Martin Reinecke committed
241
            res = res - x.log().vdot(self._d)
Martin Reinecke's avatar
Martin Reinecke committed
242
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
243
            return Field.scalar(res)
244
245
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
246
247
248
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

249

250
class InverseGammaLikelihood(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
251
    """Computes the negative log-likelihood of the inverse gamma distribution.
252
253
254

    It negative log-pdf(x) is given by

Martin Reinecke's avatar
Martin Reinecke committed
255
256
257
258
259
260
261
    .. math ::

        \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i

    This is the likelihood for the variance :math:`x=S_k` given data
    :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have
    the covariance :math:`S_k`.
262
263
264
265
266
267
268

    Parameters
    ----------
    beta : Field
        beta parameter of the inverse gamma distribution
    alpha : Scalar, Field, optional
        alpha parameter of the inverse gamma distribution
269
    """
Philipp Arras's avatar
Philipp Arras committed
270

271
272
    def __init__(self, beta, alpha=-0.5):
        if not isinstance(beta, Field):
Philipp Arras's avatar
Philipp Arras committed
273
            raise TypeError
274
275
        self._beta = beta
        if np.isscalar(alpha):
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
276
            alpha = Field(beta.domain, np.full(beta.shape, alpha))
277
278
279
280
        elif not isinstance(alpha, Field):
            raise TypeError
        self._alphap1 = alpha+1
        self._domain = DomainTuple.make(beta.domain)
281
282

    def apply(self, x):
283
        self._check_input(x)
284
        res = x.log().vdot(self._alphap1) + (1./x).vdot(self._beta)
285
286
        if not isinstance(x, Linearization):
            return Field.scalar(res)
287
288
        if not x.want_metric:
            return res
289
        metric = SandwichOperator.make(x.jac, makeOp(self._alphap1/(x.val**2)))
290
291
292
        return res.add_metric(metric)


293
class StudentTEnergy(EnergyOperator):
Lukas Platz's avatar
Lukas Platz committed
294
    """Computes likelihood energy corresponding to Student's t-distribution.
295
296

    .. math ::
Lukas Platz's avatar
Lukas Platz committed
297
298
        E_\\theta(f) = -\\log \\text{StudentT}_\\theta(f)
                     = \\frac{\\theta + 1}{2} \\log(1 + \\frac{f^2}{\\theta}),
299

Lukas Platz's avatar
Lukas Platz committed
300
    where f is a field defined on `domain`.
301
302
303

    Parameters
    ----------
Lukas Platz's avatar
Lukas Platz committed
304
305
    domain : `Domain` or `DomainTuple`
        Domain of the operator
306
307
308
309
310
311
312
313
314
315
    theta : Scalar
        Degree of freedom parameter for the student t distribution
    """

    def __init__(self, domain, theta):
        self._domain = DomainTuple.make(domain)
        self._theta = theta

    def apply(self, x):
        self._check_input(x)
316
        v = ((self._theta+1)/2)*(x**2/self._theta).log1p().sum()
317
318
319
320
        if not isinstance(x, Linearization):
            return Field.scalar(v)
        if not x.want_metric:
            return v
321
        met = ScalingOperator(self.domain, (self._theta+1) / (self._theta+3))
322
323
324
325
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


Martin Reinecke's avatar
Martin Reinecke committed
326
class BernoulliEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
327
    """Computes likelihood energy of expected event frequency constrained by
328
329
    event data.

Philipp Arras's avatar
Philipp Arras committed
330
331
332
333
334
335
336
    .. math ::
        E(f) = -\\log \\text{Bernoulli}(d|f)
             = -d^\\dagger \\log f  - (1-d)^\\dagger \\log(1-f),

    where f is a field defined on `d.domain` with the expected
    frequencies of events.

337
338
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
339
    d : Field
Philipp Arras's avatar
Philipp Arras committed
340
        Data field with events (1) or non-events (0).
Martin Reinecke's avatar
Martin Reinecke committed
341
    """
Philipp Arras's avatar
Philipp Arras committed
342

343
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
344
345
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
346
        if not np.all(np.logical_or(d.val == 0, d.val == 1)):
Philipp Arras's avatar
Philipp Arras committed
347
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
348
        self._d = d
349
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
350
351

    def apply(self, x):
352
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
353
        v = -(x.log().vdot(self._d) + (1. - x).log().vdot(1. - self._d))
Martin Reinecke's avatar
Martin Reinecke committed
354
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
355
            return Field.scalar(v)
356
357
        if not x.want_metric:
            return v
Philipp Arras's avatar
Philipp Arras committed
358
        met = makeOp(1./(x.val*(1. - x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
359
360
361
362
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


363
class StandardHamiltonian(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
364
365
    """Computes an information Hamiltonian in its standard form, i.e. with the
    prior being a Gaussian with unit covariance.
366

Philipp Arras's avatar
Philipp Arras committed
367
    Let the likelihood energy be :math:`E_{lh}`. Then this operator computes:
368

Philipp Arras's avatar
Philipp Arras committed
369
370
    .. math ::
         H(f) = 0.5 f^\\dagger f + E_{lh}(f):
371

Martin Reinecke's avatar
Martin Reinecke committed
372
    Other field priors can be represented via transformations of a white
373
374
    Gaussian field into a field with the desired prior probability structure.

Martin Reinecke's avatar
Martin Reinecke committed
375
    By implementing prior information this way, the field prior is represented
376
377
378
    by a generative model, from which NIFTy can draw samples and infer a field
    using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method.

Philipp Arras's avatar
Philipp Arras committed
379
380
381
382
383
384
385
386
    The metric of this operator can be used as covariance for drawing Gaussian
    samples.

    Parameters
    ----------
    lh : EnergyOperator
        The likelihood energy.
    ic_samp : IterationController
387
        Tells an internal :class:`SamplingEnabler` which convergence criterion
Philipp Arras's avatar
Philipp Arras committed
388
389
390
391
392
393
        to use to draw Gaussian samples.

    See also
    --------
    `Encoding prior knowledge in the structure of the likelihood`,
    Jakob Knollmüller, Torsten A. Ensslin,
Martin Reinecke's avatar
Martin Reinecke committed
394
    `<https://arxiv.org/abs/1812.04403>`_
Martin Reinecke's avatar
Martin Reinecke committed
395
    """
Philipp Arras's avatar
Philipp Arras committed
396

397
    def __init__(self, lh, ic_samp=None, _c_inp=None):
Martin Reinecke's avatar
Martin Reinecke committed
398
399
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
400
401
        if _c_inp is not None:
            _, self._prior = self._prior.simplify_for_constant_input(_c_inp)
Martin Reinecke's avatar
Martin Reinecke committed
402
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
403
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
404
405

    def apply(self, x):
406
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
407
408
409
        if (self._ic_samp is None or not isinstance(x, Linearization)
                or not x.want_metric):
            return self._lh(x) + self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
410
        else:
411
            lhx, prx = self._lh(x), self._prior(x)
412
413
            mtr = SamplingEnabler(lhx.metric, prx.metric,
                                  self._ic_samp)
Philipp Arras's avatar
Philipp Arras committed
414
            return (lhx + prx).add_metric(mtr)
Martin Reinecke's avatar
Martin Reinecke committed
415

Philipp Arras's avatar
Philipp Arras committed
416
417
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
418
        subs += '\nPrior:\n{}'.format(self._prior)
Martin Reinecke's avatar
Martin Reinecke committed
419
        return 'StandardHamiltonian:\n' + utilities.indent(subs)
Philipp Arras's avatar
Philipp Arras committed
420

421
422
423
424
    def _simplify_for_constant_input_nontrivial(self, c_inp):
        out, lh1 = self._lh.simplify_for_constant_input(c_inp)
        return out, StandardHamiltonian(lh1, self._ic_samp, _c_inp=c_inp)

Martin Reinecke's avatar
Martin Reinecke committed
425

Martin Reinecke's avatar
Martin Reinecke committed
426
class AveragedEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
427
    """Averages an energy over samples.
Martin Reinecke's avatar
Martin Reinecke committed
428

429
430
431
    Parameters
    ----------
    h: Hamiltonian
Philipp Arras's avatar
Philipp Arras committed
432
       The energy to be averaged.
Martin Reinecke's avatar
Martin Reinecke committed
433
    res_samples : iterable of Fields
Torsten Ensslin's avatar
Torsten Ensslin committed
434
435
       Set of residual sample points to be added to mean field for
       approximate estimation of the KL.
436

Philipp Arras's avatar
Docs    
Philipp Arras committed
437
438
439
440
441
    Notes
    -----
    - Having symmetrized residual samples, with both :math:`v_i` and
      :math:`-v_i` being present, ensures that the distribution mean is
      exactly represented.
Torsten Ensslin's avatar
Fix te    
Torsten Ensslin committed
442

Philipp Arras's avatar
Docs    
Philipp Arras committed
443
444
445
    - :class:`AveragedEnergy(h)` approximates
      :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m`
      are drawn from a Gaussian distribution with covariance :math:`D`.
Martin Reinecke's avatar
Martin Reinecke committed
446
    """
Martin Reinecke's avatar
Martin Reinecke committed
447
448
449

    def __init__(self, h, res_samples):
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
450
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
451
452
453
        self._res_samples = tuple(res_samples)

    def apply(self, x):
454
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
455
456
        mymap = map(lambda v: self._h(x + v), self._res_samples)
        return utilities.my_sum(mymap)*(1./len(self._res_samples))