correlated_fields.py 12 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34
35
from ..sugar import from_global_data, full, makeDomain

Philipp Arras's avatar
Philipp Arras committed
36

37
38
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
39
40
41
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
42
43
    return logmean, logsig

44

45
46
47
def _lognormal_moment_matching(mean, sig, key):
    key = str(key)
    logmean, logsig = _lognormal_moments(mean, sig)
Philipp Arras's avatar
Philipp Arras committed
48
49
    return _normal(logmean, logsig, key).exp()

50

Philipp Arras's avatar
Philipp Arras committed
51
52
53
54
55
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Arras's avatar
Philipp Arras committed
56
57
58
59
def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
60
61
62
63
64
65
66
67
68
69
70
def _logkl(power_space):
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
    logkl = np.insert(logkl, 0, 0)
    return logkl


Philipp Frank's avatar
Philipp Frank committed
71
class _SlopeRemover(EndomorphicOperator):
Philipp Arras's avatar
Philipp Arras committed
72
    def __init__(self, domain):
Philipp Frank's avatar
Philipp Frank committed
73
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
74
75
        assert len(self._domain) == 1
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
76
        logkl = _logkl(self._domain)
77
        self._sc = logkl/float(logkl[-1])
Philipp Frank's avatar
Philipp Frank committed
78
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
79

80
81
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
82
83
        x = x.to_global_data()
        if mode == self.TIMES:
84
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
85
        else:
86
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
87
88
            res += x
            res[-1] -= (x*self._sc).sum()
89
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
90

91

Philipp Arras's avatar
Philipp Arras committed
92
93
94
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
Philipp Arras's avatar
Philipp Arras committed
95
96
        assert len(self._target) == 1
        assert isinstance(self._target[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
        logk_lengths = _log_k_lengths(self._target[0])
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
            res[0] = 0
            res[1] = 0
            res[2:] = np.cumsum(x[1])
            res[2:] = (res[2:] + res[1:-1])/2*self._logvol + x[0]
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
            x[2:] *= self._logvol/2.
122
123
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
124
125
126
127
128
129
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
130
131
        assert len(self._domain) == 1
        assert isinstance(domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
151
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
152
153
154
155
156
157
158
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


159
160
161
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, key):
Philipp Arras's avatar
Philipp Arras committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
        dt = twolog._logvol
        sc = np.zeros(twolog.domain.shape)
        sc[0] = sc[1] = np.sqrt(dt)
        sc = from_global_data(twolog.domain, sc)
        expander = VdotOperator(sc).adjoint
        sigmasq = expander @ flexibility

        dist = np.zeros(twolog.domain.shape)
        dist[0] += 1.
        dist = from_global_data(twolog.domain, dist)
        scale = VdotOperator(dist).adjoint @ asperity

        shift = np.ones(scale.target.shape)
        shift[0] = dt**2/12.
        shift = from_global_data(scale.target, shift)
        scale = sigmasq*(Adder(shift) @ scale).sqrt()

        smooth = twolog @ (scale*ducktape(scale.target, None, key))
Philipp Arras's avatar
Philipp Arras committed
195
        tg = smooth.target
Philipp Arras's avatar
Philipp Arras committed
196
197
        noslope = _SlopeRemover(tg) @ smooth
        _t = VdotOperator(from_global_data(tg, _logkl(tg))).adjoint
Philipp Arras's avatar
Philipp Arras committed
198
        smoothslope = _t @ loglogavgslope + noslope
Philipp Arras's avatar
Philipp Arras committed
199
200
201
202
203
204
205
206
207

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
Philipp Arras's avatar
Philipp Arras committed
208
209
210
        op = adder @ ((expander @ fluctuations)*normal_ampl)
        self.apply = op.apply
        self._domain, self._target = op.domain, op.target
Philipp Arras's avatar
Philipp Arras committed
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

class CorrelatedFieldMaker:
    def __init__(self):
        self._a = []

    def add_fluctuations(self,
                         target,
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
                         prefix=''):
Philipp Arras's avatar
Philipp Arras committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
252
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
253
                        prefix + 'loglogavgslope')
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        self._a.append(
            _Amplitude(target, fluct, flex, asp, avgsl, prefix + 'spectrum'))

    def finalize_from_op(self, zeromode, prefix=''):
        assert isinstance(zeromode, Operator)
        hspace = makeDomain([dd.target[0].harmonic_partner for dd in self._a])
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ zeromode

        n_amplitudes = len(self._a)
        ht = HarmonicTransformOperator(hspace, space=0)
        for i in range(1, n_amplitudes):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht

        pd = PowerDistributor(hspace, self._a[0].target[0], 0)
        for i in range(1, n_amplitudes):
            foo = PowerDistributor(pd.domain, self._a[i].target[0], space=i)
            pd = pd @ foo

        spaces = tuple(range(n_amplitudes))
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[(i + 1):])
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
281

282
        return ht(azm*(pd @ a)*ducktape(hspace, None, prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
283
284
285
286

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
287
                 prefix='',
Philipp Arras's avatar
Philipp Arras committed
288
289
290
291
292
293
294
295
296
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
297
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
298
299
300
301
            offset = float(offset)
        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
302
        return self.finalize_from_op(azm, prefix)
Philipp Arras's avatar
Philipp Arras committed
303
304
305

    @property
    def amplitudes(self):
306
        return self._a
307

308
309
    def effective_total_fluctuation(self,
                                    fluctuations_means,
310
                                    fluctuations_stddevs,
311
                                    nsamples=100):
312
        namps = len(fluctuations_means)
313
314
        xis = np.random.normal(size=namps*nsamples).reshape((namps, nsamples))
        q = np.ones(nsamples)
315
316
317
318
        for i in range(len(fluctuations_means)):
            m, sig = _lognormal_moments(fluctuations_means[i],
                                        fluctuations_stddevs[i])
            f = np.exp(m + sig*xis[i])
319
320
            q *= (1. + f**2)
        q = np.sqrt(q - 1.)
321
        return np.mean(q), np.std(q)