test_field.py 5.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18
19
20
21
22

import unittest

import numpy as np
from numpy.testing import assert_,\
23
24
                          assert_almost_equal,\
                          assert_allclose
Theo Steininger's avatar
Theo Steininger committed
25
from nose.plugins.skip import SkipTest
26

27
from itertools import product
28
29

from nifty import Field,\
30
31
                  RGSpace,\
                  LMSpace,\
Theo Steininger's avatar
Theo Steininger committed
32
33
                  PowerSpace,\
                  nifty_configuration
34

35
import d2o
36
from d2o import distributed_data_object
37

Jait Dixit's avatar
Jait Dixit committed
38
from test.common import expand
39
40


Martin Reinecke's avatar
Martin Reinecke committed
41
SPACES = [RGSpace((4,)), RGSpace((5))]
Theo Steininger's avatar
Theo Steininger committed
42
SPACE_COMBINATIONS = [(), SPACES[0], SPACES[1], SPACES]
43
44
45


class Test_Interface(unittest.TestCase):
46
    @expand(product(SPACE_COMBINATIONS,
Martin Reinecke's avatar
Martin Reinecke committed
47
                    [['distribution_strategy', str],
48
49
50
51
52
53
54
55
56
57
                     ['domain', tuple],
                     ['domain_axes', tuple],
                     ['val', distributed_data_object],
                     ['shape', tuple],
                     ['dim', np.int],
                     ['dof', np.int],
                     ['total_volume', np.float]]))
    def test_return_types(self, domain, attribute_desired_type):
        attribute = attribute_desired_type[0]
        desired_type = attribute_desired_type[1]
58
        f = Field(domain=domain)
59
60
        assert_(isinstance(getattr(f, attribute), desired_type))

Martin Reinecke's avatar
Martin Reinecke committed
61

62
63
64
65
66
67
class Test_Functionality(unittest.TestCase):
    @expand(product([True, False], [True, False],
                    [True, False], [True, False],
                    [(1,), (4,), (5,)], [(1,), (6,), (7,)]))
    def test_hermitian_decomposition(self, z1, z2, preserve, complexdata,
                                     s1, s2):
Theo Steininger's avatar
Theo Steininger committed
68
69
70
71
72
73
        try:
            r1 = RGSpace(s1, harmonic=True, zerocenter=(z1,))
            r2 = RGSpace(s2, harmonic=True, zerocenter=(z2,))
            ra = RGSpace(s1+s2, harmonic=True, zerocenter=(z1, z2))
        except ValueError:
            raise SkipTest
Martin Reinecke's avatar
Martin Reinecke committed
74

Martin Reinecke's avatar
Martin Reinecke committed
75
76
        if preserve:
            complexdata=True
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        v = np.random.random(s1+s2)
        if complexdata:
            v = v + 1j*np.random.random(s1+s2)
        f1 = Field(ra, val=v, copy=True)
        f2 = Field((r1, r2), val=v, copy=True)
        h1, a1 = Field._hermitian_decomposition((ra,), f1.val, (0,),
                                                ((0, 1,),), preserve)
        h2, a2 = Field._hermitian_decomposition((r1, r2), f2.val, (0, 1),
                                                ((0,), (1,)), preserve)
        h3, a3 = Field._hermitian_decomposition((r1, r2), f2.val, (1, 0),
                                                ((0,), (1,)), preserve)

        assert_almost_equal(h1.get_full_data(), h2.get_full_data())
        assert_almost_equal(a1.get_full_data(), a2.get_full_data())
        assert_almost_equal(h1.get_full_data(), h3.get_full_data())
        assert_almost_equal(a1.get_full_data(), a3.get_full_data())
93
94
95
96

    @expand(product([RGSpace((8,), harmonic=True,
                             zerocenter=False),
                     RGSpace((8, 8), harmonic=True, distances=0.123,
97
                             zerocenter=True)],
98
99
                    [RGSpace((8,), harmonic=True,
                             zerocenter=False),
Theo Steininger's avatar
Theo Steininger committed
100
101
102
103
104
                     LMSpace(12)],
                    ['real', 'complex']))
    def test_power_synthesize_analyze(self, space1, space2, base):
        nifty_configuration['harmonic_rg_base'] = base

105
106
        d2o.random.seed(11)

107
108
109
110
111
112
113
114
115
116
117
        p1 = PowerSpace(space1)
        spec1 = lambda k: 42/(1+k)**2
        fp1 = Field(p1, val=spec1)

        p2 = PowerSpace(space2)
        spec2 = lambda k: 42/(1+k)**3
        fp2 = Field(p2, val=spec2)

        outer = np.outer(fp1.val.get_full_data(), fp2.val.get_full_data())
        fp = Field((p1, p2), val=outer)

118
        samples = 2000
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        ps1 = 0.
        ps2 = 0.
        for ii in xrange(samples):
            sk = fp.power_synthesize(spaces=(0, 1), real_signal=True)

            sp = sk.power_analyze(spaces=(0, 1), keep_phase_information=False)
            ps1 += sp.sum(spaces=1)/fp2.sum()
            ps2 += sp.sum(spaces=0)/fp1.sum()

        assert_allclose(ps1.val.get_full_data()/samples,
                        fp1.val.get_full_data(),
                        rtol=0.1)
        assert_allclose(ps2.val.get_full_data()/samples,
                        fp2.val.get_full_data(),
                        rtol=0.1)
Martin Reinecke's avatar
Martin Reinecke committed
134
135
136
137
138
139
140
141
142

    def test_vdot(self):
        s=RGSpace((10,))
        f1=Field.from_random("normal",domain=s,dtype=np.complex128)
        f2=Field.from_random("normal",domain=s,dtype=np.complex128)
        assert_allclose(f1.vdot(f2),f1.vdot(f2,spaces=0))
        assert_allclose(f1.vdot(f2),np.conj(f2.vdot(f1)))