plot.py 13.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
20

Martin Reinecke's avatar
Martin Reinecke committed
21
22
import os

23
24
25
import numpy as np

from ..compat import *
Martin Reinecke's avatar
Martin Reinecke committed
26
27
28
29
30
31
from ..field import Field
from ..domains.gl_space import GLSpace
from ..domains.hp_space import HPSpace
from ..domains.power_space import PowerSpace
from ..domains.rg_space import RGSpace
from .. import dobj
32

Martin Reinecke's avatar
Martin Reinecke committed
33
34
35
36
37
38
39
40
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
41
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
42

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
43

Martin Reinecke's avatar
Martin Reinecke committed
44
45
46
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
47
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    xc = (xsize-1)*0.5
    yc = (ysize-1)*0.5
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
    u = 2*(u-xc)/(xc/1.02)
    v = (v-yc)/(yc/1.02)

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
62

Martin Reinecke's avatar
Martin Reinecke committed
63
64
65
66
67
68
69
70
71
def _find_closest(A, target):
    # A must be sorted
    idx = A.searchsorted(target)
    idx = np.clip(idx, 1, len(A)-1)
    left = A[idx-1]
    right = A[idx]
    idx -= target - left < right - target
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
72

Martin Reinecke's avatar
Martin Reinecke committed
73
def _makeplot(name):
74
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
75
    if dobj.rank != 0:
76
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
77
        return
Martin Reinecke's avatar
Martin Reinecke committed
78
79
    if name is None:
        plt.show()
80
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
81
82
        return
    extension = os.path.splitext(name)[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
83
    if extension == ".pdf":
Martin Reinecke's avatar
Martin Reinecke committed
84
85
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
86
    elif extension == ".png":
Martin Reinecke's avatar
Martin Reinecke committed
87
88
89
90
91
        plt.savefig(name)
        plt.close()
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
92

Martin Reinecke's avatar
Martin Reinecke committed
93
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
94
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
95
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
96
97
98
99
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
100
101
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
102

Martin Reinecke's avatar
Martin Reinecke committed
103
104
105
106
107
108
109
110
111
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
158
159
160

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
161
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
162
163
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
164
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
165

Martin Reinecke's avatar
Martin Reinecke committed
166

Martin Reinecke's avatar
Martin Reinecke committed
167
def _plot(f, ax, **kwargs):
168
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
169
    _register_cmaps()
170
171
172
    if isinstance(f, Field):
        f = [f]
    if not isinstance(f, list):
Martin Reinecke's avatar
Martin Reinecke committed
173
        raise TypeError("incorrect data type")
174
175
176
177
178
179
180
181
182
183
184
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
            if len(dom) != 1:
                raise ValueError("input field must have exactly one domain")
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
            if not (isinstance(dom[0], PowerSpace) or
185
                    (isinstance(dom[0], RGSpace) and len(dom[0].shape) == 1)):
186
                raise ValueError("PowerSpace or 1D RGSpace required")
Martin Reinecke's avatar
Martin Reinecke committed
187

clienhar's avatar
clienhar committed
188
    label = kwargs.pop("label", None)
Martin Reinecke's avatar
Martin Reinecke committed
189
190
    if label is None:
        label = [None] * len(f)
191
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
192
193
        label = [label]

clienhar's avatar
clienhar committed
194
    linewidth = kwargs.pop("linewidth", None)
Philipp Arras's avatar
Philipp Arras committed
195
    if linewidth is None:
Martin Reinecke's avatar
Martin Reinecke committed
196
        linewidth = [1.] * len(f)
Philipp Arras's avatar
Philipp Arras committed
197
198
199
    if not isinstance(linewidth, list):
        linewidth = [linewidth]

clienhar's avatar
clienhar committed
200
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
201
202
203
204
205
    if alpha is None:
        alpha = [None] * len(f)
    if not isinstance(alpha, list):
        alpha = [alpha]

206
    dom = dom[0]
clienhar's avatar
clienhar committed
207
208
209
210
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
Martin Reinecke's avatar
Martin Reinecke committed
211
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
212
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
213
214
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
215
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
216
            for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
217
                ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
218
219
                plt.plot(xcoord, ycoord, label=label[i],
                         linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
220
            _limit_xy(**kwargs)
221
222
            if label != ([None]*len(f)):
                plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
223
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
224
        elif len(dom.shape) == 2:
225
            f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
226
227
228
229
            nx = dom.shape[0]
            ny = dom.shape[1]
            dx = dom.distances[0]
            dy = dom.distances[1]
Philipp Arras's avatar
Philipp Arras committed
230
231
            xc = np.arange(nx, dtype=np.float64)*dx
            yc = np.arange(ny, dtype=np.float64)*dy
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
232
            im = ax.imshow(fld.to_global_data(),
Martin Reinecke's avatar
Martin Reinecke committed
233
                           extent=[xc[0], xc[-1], yc[0], yc[-1]],
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
234
                           vmin=kwargs.get("zmin"),
Martin Reinecke's avatar
Martin Reinecke committed
235
                           vmax=kwargs.get("zmax"), cmap=cmap, origin="lower")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
236
237
238
239
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
240
            plt.colorbar(im)
Martin Reinecke's avatar
Martin Reinecke committed
241
            _limit_xy(**kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
242
243
244
245
246
            return
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
        plt.title('power')
Philipp Arras's avatar
Philipp Arras committed
247
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
248
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
249
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
250
251
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
252
        _limit_xy(**kwargs)
253
254
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
255
256
        return
    elif isinstance(dom, HPSpace):
257
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
258
259
260
261
262
263
264
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)

        ptg = np.empty((phi.size, 2), dtype=np.float64)
        ptg[:, 0] = theta
        ptg[:, 1] = phi
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
265
266
        base = pyHealpix.Healpix_Base(int(np.sqrt(f.size//12)), "RING")
        res[mask] = f.to_global_data()[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
267
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
268
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
269
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
270
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
271
272
        return
    elif isinstance(dom, GLSpace):
273
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
274
275
276
277
278
279
280
281
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
        ra = np.linspace(0, 2*np.pi, dom.nlon+1)
        dec = pyHealpix.GL_thetas(dom.nlat)
        ilat = _find_closest(dec, theta)
        ilon = _find_closest(ra, phi)
        ilon = np.where(ilon == dom.nlon, 0, ilon)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
282
        res[mask] = f.to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
283
284

        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
285
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
286
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
287
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
288
289
290
        return

    raise ValueError("Field type not(yet) supported")
Martin Reinecke's avatar
Martin Reinecke committed
291

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
292

Martin Reinecke's avatar
Martin Reinecke committed
293
294
295
_plots = []
_kwargs = []

296

Martin Reinecke's avatar
Martin Reinecke committed
297
def plot(f, **kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    """Add a figure to the current list of plots.

    Notes
    -----
    After doing one or more calls `plot()`, one also needs to call
    `plot_finish()` to output the result.

    Parameters
    ----------
    f: Field, or list of Field objects
        If `f` is a single Field, it must live over a single `RGSpace`,
        `PowerSpace`, `HPSpace`, `GLSPace`.
        If it is a list, all list members must be Fields living over the same
        one-dimensional `RGSpace` or `PowerSpace`.

    Allowed key words:
    title: string
        title of the plot
    xlabel: string
        label for the x axis
    ylabel: string
        label for the y axis
    [xyz]min, [xyz]max: float
        limits for the values to plot
    colormap: string
        color map to use for the plot (if it is a 2D plot)
    linewidth: float or list of floats
        line width
    label: string of list of strings
        annotation string
    alpha: float or list of floats
        transparency value
    """
Martin Reinecke's avatar
Martin Reinecke committed
331
332
333
    _plots.append(f)
    _kwargs.append(kwargs)

334

Martin Reinecke's avatar
Martin Reinecke committed
335
def plot_finish(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    """Plot the accumulated list of figures

    Allowed key words:
    title: string
        title of the full plot
    nx, ny: integer (default: square root of the numer of plots in the list,
                     rounded up)
        number of subplots to use in x- and y-direction
    xsize, ysize: float (default: 6)
        dimensions of the full plot in inches
    name: string (default: "")
        if left empty, the plot will be shown on the screen
        otherwise it will be written to a file with the given name.
        Supported extensions: .png and .pdf)
    """
Martin Reinecke's avatar
Martin Reinecke committed
351
    global _plots, _kwargs
Martin Reinecke's avatar
Martin Reinecke committed
352
353
354
    import matplotlib.pyplot as plt
    nplot = len(_plots)
    fig = plt.figure()
Martin Reinecke's avatar
Martin Reinecke committed
355
356
    if "title" in kwargs:
        plt.suptitle(kwargs.pop("title"))
357
358
359
    nx = kwargs.pop("nx", int(np.ceil(np.sqrt(nplot))))
    ny = kwargs.pop("ny", int(np.ceil(np.sqrt(nplot))))
    if nx*ny < nplot:
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
360
361
        raise ValueError(
            'Figure dimensions not sufficient for number of plots')
Martin Reinecke's avatar
Martin Reinecke committed
362
363
364
    xsize = kwargs.pop("xsize", 6)
    ysize = kwargs.pop("ysize", 6)
    fig.set_size_inches(xsize, ysize)
Martin Reinecke's avatar
Martin Reinecke committed
365
    for i in range(nplot):
366
        ax = fig.add_subplot(ny, nx, i+1)
Martin Reinecke's avatar
Martin Reinecke committed
367
        _plot(_plots[i], ax, **_kwargs[i])
368
    fig.tight_layout()
Martin Reinecke's avatar
Martin Reinecke committed
369
370
371
    _makeplot(kwargs.pop("name", None))
    _plots = []
    _kwargs = []