nfft.py 2.93 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2018-2019 Max-Planck-Society
#
# Resolve is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np

import nifty5 as ift


Philipp Arras's avatar
Philipp Arras committed
23
class NFFT(ift.LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    """Performs a non-equidistant Fourier transform, i.e. a Fourier transform
    followed by a degridding operation.

    Parameters
    ----------
    domain : RGSpace
        Domain of the operator. It has to be two-dimensional and have shape
        `(2N, 2N)`. The coordinates of the lower left pixel of the dirty image
        are `(-N,-N)`, and of the upper right pixel `(N-1,N-1)`.
    uv : numpy.ndarray
        2D numpy array of type float64 and shape (M,2), where M is the number
        of measurements. uv[i,0] and uv[i,1] contain the u and v coordinates
        of measurement #i, respectively. All coordinates must lie in the range
        `[-0.5; 0,5[`.
    """
    def __init__(self, domain, uv):
        from pynfft.nfft import NFFT
        npix = domain.shape[0]
        assert npix == domain.shape[1]
        assert len(domain.shape) == 2
        assert type(npix) == int, "npix must be integer"
        assert npix > 0 and (
            npix % 2) == 0, "npix must be an even, positive integer"
        assert isinstance(uv, np.ndarray), "uv must be a Numpy array"
        assert uv.dtype == np.float64, "uv must be an array of float64"
        assert uv.ndim == 2, "uv must be a 2D array"
        assert uv.shape[0] > 0, "at least one point needed"
        assert uv.shape[1] == 2, "the second dimension of uv must be 2"
        assert np.all(uv >= -0.5) and np.all(uv <= 0.5),\
            "all coordinates must lie between -0.5 and 0.5"

        self._domain = ift.DomainTuple.make(domain)
        self._target = ift.DomainTuple.make(
            ift.UnstructuredDomain(uv.shape[0]))
        self._capability = self.TIMES | self.ADJOINT_TIMES

        self.npt = uv.shape[0]
        self.plan = NFFT(self.domain.shape, self.npt, m=6)
        self.plan.x = uv
        self.plan.precompute()

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            self.plan.f_hat = x.to_global_data()
            res = self.plan.trafo().copy()
        else:
            self.plan.f = x.to_global_data()
            res = self.plan.adjoint().copy()
        return ift.Field.from_global_data(self._tgt(mode), res)