distributed_do.py 18.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20
21
22

import sys

23
24
import numpy as np
from mpi4py import MPI
Philipp Arras's avatar
Philipp Arras committed
25
26
27

from ..compat import *
from .random import Random
28

Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
__all__ = ["ntask", "rank", "master", "local_shape", "data_object", "full",
           "empty", "zeros", "ones", "empty_like", "vdot", "exp",
           "log", "tanh", "sqrt", "from_object", "from_random",
           "local_data", "ibegin", "ibegin_from_shape", "np_allreduce_sum",
           "np_allreduce_min", "np_allreduce_max",
           "distaxis", "from_local_data", "from_global_data", "to_global_data",
Martin Reinecke's avatar
Martin Reinecke committed
35
           "redistribute", "default_distaxis", "is_numpy", "absmax", "norm",
Martin Reinecke's avatar
Martin Reinecke committed
36
           "lock", "locked", "uniform_full", "transpose", "to_global_data_rw",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
37
           "ensure_not_distributed", "ensure_default_distributed",
38
39
           "clipped_exp", "tanh", "conjugate", "sin", "cos", "tan",
           "sinh", "cosh", "sinc", "absolute", "sign"]
Martin Reinecke's avatar
Martin Reinecke committed
40

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
41
42
43
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
44
master = (rank == 0)
45
46


Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
50
def is_numpy():
    return False


Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
51
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
52
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
53

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
54
55

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
56
57
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
58
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
59
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
60
61
    return lo, hi

62

63
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
64
    if len(shape) == 0 or distaxis == -1:
65
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
66
67
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
68
69
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
70

71
72
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
73
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
74
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
75
            distaxis = -1
Martin Reinecke's avatar
Martin Reinecke committed
76
77
            if not isinstance(data, np.ndarray):
                data = np.full((), data)
78
79
        self._distaxis = distaxis
        self._data = data
Martin Reinecke's avatar
Martin Reinecke committed
80
81
        if local_shape(self._shape, self._distaxis) != self._data.shape:
            raise ValueError("shape mismatch")
82

83
84
85
    def copy(self):
        return data_object(self._shape, self._data.copy(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#     def _sanity_checks(self):
#         # check whether the distaxis is consistent
#         if self._distaxis < -1 or self._distaxis >= len(self._shape):
#             raise ValueError
#         itmp = np.array(self._distaxis)
#         otmp = np.empty(ntask, dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         if np.any(otmp != self._distaxis):
#             raise ValueError
#         # check whether the global shape is consistent
#         itmp = np.array(self._shape)
#         otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         for i in range(ntask):
#             if np.any(otmp[i, :] != self._shape):
#                 raise ValueError
#         # check shape of local data
#         if self._distaxis < 0:
#             if self._data.shape != self._shape:
#                 raise ValueError
#         else:
#             itmp = np.array(self._shape)
#             itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
#                                               ntask, rank)
#             if np.any(self._data.shape != itmp):
#                 raise ValueError
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
127
        return data_object(self._shape, self._data.real, self._distaxis)
128
129
130

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
131
        return data_object(self._shape, self._data.imag, self._distaxis)
132

Martin Reinecke's avatar
Martin Reinecke committed
133
134
135
136
137
138
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
139
    def _contraction_helper(self, op, mpiop, axis):
140
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
141
            if len(axis) == len(self._data.shape):
142
143
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
144
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
145
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
146
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
147
148
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
149
            return res2[()]
150
151

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
152
153
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
154
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
155
            return from_global_data(res2, distaxis=0)
156
        else:
Martin Reinecke's avatar
Martin Reinecke committed
157
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
158
159
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
160
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
161
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
162
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
163
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
164
165
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
166
167
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
168
169
170

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
171

172
173
174
    def prod(self, axis=None):
        return self._contraction_helper("prod", MPI.PROD, axis)

175
176
#    def min(self, axis=None):
#        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
177

178
179
#    def max(self, axis=None):
#        return self._contraction_helper("max", MPI.MAX, axis)
180

181
182
183
184
185
186
    def mean(self, axis=None):
        if axis is None:
            sz = self.size
        else:
            sz = reduce(lambda x, y: x*y, [self.shape[i] for i in axis])
        return self.sum(axis)/sz
Martin Reinecke's avatar
Martin Reinecke committed
187

188
189
    def std(self, axis=None):
        return np.sqrt(self.var(axis))
Martin Reinecke's avatar
Martin Reinecke committed
190

Martin Reinecke's avatar
Martin Reinecke committed
191
    # FIXME: to be improved!
192
193
194
    def var(self, axis=None):
        if axis is not None and len(axis) != len(self.shape):
            raise ValueError("functionality not yet supported")
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
195
196
        return (abs(self-self.mean())**2).mean()

197
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
198
        a = self
199
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
200
            b = other
201
202
203
204
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
205
206
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
207
208
209
210
211
        elif np.isscalar(other):
            a = a._data
            b = other
        else:
            return NotImplemented
212
213

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
214
215
216
217
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
218
219

    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
220
        return data_object(self._shape, -self._data, self._distaxis)
221
222

    def __abs__(self):
223
        return data_object(self._shape, abs(self._data), self._distaxis)
224
225

    def all(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
226
        return self.sum() == self.size
227
228

    def any(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
229
        return self.sum() != 0
230

Martin Reinecke's avatar
fixes  
Martin Reinecke committed
231
232
    def fill(self, value):
        self._data.fill(value)
233

234

235
236
237
238
239
240
241
242
243
244
245
246
247
248
for op in ["__add__", "__radd__", "__iadd__",
           "__sub__", "__rsub__", "__isub__",
           "__mul__", "__rmul__", "__imul__",
           "__div__", "__rdiv__", "__idiv__",
           "__truediv__", "__rtruediv__", "__itruediv__",
           "__floordiv__", "__rfloordiv__", "__ifloordiv__",
           "__pow__", "__rpow__", "__ipow__",
           "__lt__", "__le__", "__gt__", "__ge__", "__eq__", "__ne__"]:
    def func(op):
        def func2(self, other):
            return self._binary_helper(other, op=op)
        return func2
    setattr(data_object, op, func(op))

Martin Reinecke's avatar
Martin Reinecke committed
249

Martin Reinecke's avatar
Martin Reinecke committed
250
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
251
252
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
253
254


Martin Reinecke's avatar
Martin Reinecke committed
255
256
257
258
259
260
def uniform_full(shape, fill_value, dtype=None, distaxis=0):
    return data_object(
        shape, np.broadcast_to(fill_value, local_shape(shape, distaxis)),
        distaxis)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
261
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
262
263
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
264
265


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
266
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
267
268
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
269
270


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
271
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
272
273
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
274
275
276
277
278
279
280


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
281
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
282
    if a._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
283
        return tmp[()]
Martin Reinecke's avatar
Martin Reinecke committed
284
285
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
286
    return res[()]
287
288
289


def _math_helper(x, function, out):
290
    function = getattr(np, function)
291
292
293
294
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
295
        return data_object(x.shape, function(x._data), x._distaxis)
296
297


298
_current_module = sys.modules[__name__]
Martin Reinecke's avatar
Martin Reinecke committed
299

300
301
for f in ["sqrt", "exp", "log", "tanh", "conjugate", "sin", "cos", "tan",
          "sinh", "cosh", "sinc", "absolute", "sign"]:
302
303
304
305
306
    def func(f):
        def func2(x, out=None):
            return _math_helper(x, f, out)
        return func2
    setattr(_current_module, f, func(f))
307
308


309
def clipped_exp(x):
Martin Reinecke's avatar
fix  
Martin Reinecke committed
310
    return data_object(x.shape, np.exp(np.clip(x.data, -300, 300), x.distaxis))
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
311
312


313
314
315
316
def hardplus(x):
    return data_object(x.shape, np.clip(x.data, 1e-20, None), x.distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
317
318
319
320
321
322
323
324
325
326
327
328
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    data = np.array(object._data, dtype=dtype, copy=copy)
    if set_locked:
Martin Reinecke's avatar
fix  
Martin Reinecke committed
329
        data.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
330
    return data_object(object._shape, data, distaxis=object._distaxis)
331
332


Martin Reinecke's avatar
Martin Reinecke committed
333
334
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
335
336
337
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
338
def from_random(random_type, shape, dtype=np.float64, **kwargs):
339
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
340
    if len(shape) == 0:
Martin Reinecke's avatar
Martin Reinecke committed
341
342
343
        ldat = generator_function(dtype=dtype, shape=shape, **kwargs)
        ldat = _comm.bcast(ldat)
        return from_local_data(shape, ldat, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
344
345
346
347
348
349
350
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
351

Martin Reinecke's avatar
Martin Reinecke committed
352

Martin Reinecke's avatar
Martin Reinecke committed
353
354
355
356
def local_data(arr):
    return arr._data


357
358
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
359
    if distaxis < 0:
360
361
362
363
364
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
365
366
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
367
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
368
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
369
370


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
371
372
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
373
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
374
    return res
Martin Reinecke's avatar
Martin Reinecke committed
375
376


377
378
379
380
381
382
def np_allreduce_min(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MIN)
    return res


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
383
384
385
386
387
388
def np_allreduce_max(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MAX)
    return res


Martin Reinecke's avatar
Martin Reinecke committed
389
390
391
392
def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
393
def from_local_data(shape, arr, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
394
395
396
    return data_object(shape, arr, distaxis)


397
398
399
def from_global_data(arr, sum_up=False, distaxis=0):
    if sum_up:
        arr = np_allreduce_sum(arr)
Martin Reinecke's avatar
Martin Reinecke committed
400
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
401
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
402
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
403
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
404
    sl[distaxis] = slice(lo, hi)
405
    return data_object(arr.shape, arr[tuple(sl)], distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
406
407


Martin Reinecke's avatar
Martin Reinecke committed
408
409
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
410
411
412
413
414
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


415
416
417
418
419
420
421
def to_global_data_rw(arr):
    if arr._distaxis == -1:
        return arr._data.copy()
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
422
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
423
424
425
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
426
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
427
428
429
430
431
432
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
433
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
434
435
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
436
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
437
                break
Martin Reinecke's avatar
Martin Reinecke committed
438

Martin Reinecke's avatar
Martin Reinecke committed
439
    if arr._distaxis == -1:  # all data available, just pick the proper subset
440
        return from_global_data(arr._data, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
441
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
442
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
443
444
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
445
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
446
447
448
449
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
450
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
451
452
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
453
454
455
456
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
457
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
458
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
459

Martin Reinecke's avatar
Martin Reinecke committed
460
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
461
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
462
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
463
464
465
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
466
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
467
468
469
470
471
472
473
474
475
476
477
478
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
479
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
480
            ssz[i] = ssz0*(hi-lo)
481
            sbuf[ofs:ofs+ssz[i]] = arr._data[tuple(sslice)].flat
Martin Reinecke's avatar
Martin Reinecke committed
482
483
484
485
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
486
487
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
488
489
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
490
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
491
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
492
493
494
495
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
Martin Reinecke's avatar
Martin Reinecke committed
496
        arrnew = np.empty(local_shape(arr.shape, dist), dtype=arr.dtype)
Martin Reinecke's avatar
Martin Reinecke committed
497
498
499
500
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
501
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
502
            sz = rsz[i]//arr._data.itemsize
503
            arrnew[tuple(rslice)].flat = rbuf[ofs:ofs+sz]
Martin Reinecke's avatar
Martin Reinecke committed
504
            ofs += sz
Martin Reinecke's avatar
Martin Reinecke committed
505
        arrnew = from_local_data(arr.shape, arrnew, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
506
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
507
508


Martin Reinecke's avatar
Martin Reinecke committed
509
510
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
511
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
512
513
514
515
516
517
518
519
520
521
522
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
523
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
524
525
526
527
528
529
530
531
532
533
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
534
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
535
536
    arrnew = np.empty((sz2, arr.shape[0]), dtype=arr.dtype)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
537
538
539
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
540
        arrnew[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
541
        ofs += sz
542
    return from_local_data((arr.shape[1], arr.shape[0]), arrnew, 0)
Martin Reinecke's avatar
Martin Reinecke committed
543
544


Martin Reinecke's avatar
Martin Reinecke committed
545
546
def default_distaxis():
    return 0
547
548
549
550
551
552
553
554


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable
Martin Reinecke's avatar
Martin Reinecke committed
555
556
557
558
559
560
561
562
563
564
565
566


def ensure_not_distributed(arr, axes):
    if arr._distaxis in axes:
        arr = redistribute(arr, nodist=axes)
    return arr, arr._data


def ensure_default_distributed(arr):
    if arr._distaxis != 0:
        arr = redistribute(arr, dist=0)
    return arr
Martin Reinecke's avatar
Martin Reinecke committed
567
568
569
570
571
572


def absmax(arr):
    if arr._data.size == 0:
        tmp = np.array(0, dtype=arr._data.dtype)
    else:
573
        tmp = np.asarray(np.linalg.norm(arr._data.reshape(-1), ord=np.inf))
Martin Reinecke's avatar
Martin Reinecke committed
574
575
576
577
578
579
580
581
    res = np.empty_like(tmp)
    _comm.Allreduce(tmp, res, MPI.MAX)
    return res[()]


def norm(arr, ord=2):
    if ord == np.inf:
        return absmax(arr)
582
    tmp = np.asarray(np.linalg.norm(arr._data.reshape(-1), ord=ord) ** ord)
Martin Reinecke's avatar
Martin Reinecke committed
583
    res = np.empty_like(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
584
585
586
587
    if len(arr._data.shape) == 0:
        res = tmp
    else:
        _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
Martin Reinecke committed
588
    return res[()] ** (1./ord)