sugar.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

19
from __future__ import absolute_import, division, print_function
20

21
import sys
22

23
import numpy as np
24
25
26
27

from . import dobj, utilities
from .compat import *
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
28
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
29
from .field import Field
30
from .logger import logger
Martin Reinecke's avatar
Martin Reinecke committed
31
32
from .multi_domain import MultiDomain
from .multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
33
from .operators.block_diagonal_operator import BlockDiagonalOperator
Martin Reinecke's avatar
Martin Reinecke committed
34
from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
35
from .operators.distributors import PowerDistributor
36

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
37
38
__all__ = ['PS_field', 'power_analyze', 'create_power_operator',
           'create_harmonic_smoothing_operator', 'from_random',
39
           'full', 'from_global_data', 'from_local_data',
Jakob Knollmueller's avatar
Jakob Knollmueller committed
40
41
42
           'makeDomain', 'sqrt', 'exp', 'log', 'tanh', 'sigmoid',
           'sin', 'cos', 'tan', 'sinh', 'cosh',
           'absolute', 'one_over', 'hardplus', 'sinc',
43
44
           'conjugate', 'get_signal_variance', 'makeOp', 'domain_union',
           'get_default_codomain']
45

46

47
def PS_field(pspace, func):
Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
    if not isinstance(pspace, PowerSpace):
        raise TypeError
    data = dobj.from_global_data(func(pspace.k_lengths))
51
    return Field(DomainTuple.make(pspace), data)
Martin Reinecke's avatar
Martin Reinecke committed
52

Martin Reinecke's avatar
Martin Reinecke committed
53

54
55
56
57
58
59
60
61
62
63
64
65
66
def get_signal_variance(spec, space):
    """
    Computes how much a field with a given power spectrum will vary in space

    This is a small helper function that computes how the expected variance
    of a harmonically transformed sample of this power spectrum.

    Parameters
    ---------
    spec: method
        a method that takes one k-value and returns the power spectrum at that
        location
    space: PowerSpace or any harmonic Domain
Martin Reinecke's avatar
Martin Reinecke committed
67
68
69
70
        If this function is given a harmonic domain, it creates the naturally
        binned PowerSpace to that domain.
        The field, for which the signal variance is then computed, is assumed
        to have this PowerSpace as naturally binned PowerSpace
71
72
73
74
    """
    if space.harmonic:
        space = PowerSpace(space)
    if not isinstance(space, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
75
76
        raise ValueError(
            "space must be either a harmonic space or Power space.")
77
78
79
80
81
    field = PS_field(space, spec)
    dist = PowerDistributor(space.harmonic_partner, space)
    k_field = dist(field)
    return k_field.weight(2).sum()

82

83
84
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
85
86
    pd = PowerDistributor(field.domain, power_domain, idx)
    return pd.adjoint_times(field.weight(1)).weight(-1)  # divides by bin size
87
88


Martin Reinecke's avatar
Martin Reinecke committed
89
90
# MR FIXME: this function is not well suited for analyzing more than one
# subdomain at once, because it allows only one set of binbounds.
91
92
def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
Martin Reinecke's avatar
Martin Reinecke committed
93
    """ Computes the power spectrum for a subspace of `field`.
94
95
96
97

    Creates a PowerSpace for the space addressed by `spaces` with the given
    binning and computes the power spectrum as a Field over this
    PowerSpace. This can only be done if the subspace to  be analyzed is a
Martin Reinecke's avatar
Martin Reinecke committed
98
99
    harmonic space. The resulting field has the same units as the square of the
    initial field.
100
101
102
103
104

    Parameters
    ----------
    field : Field
        The field to be analyzed
Martin Reinecke's avatar
Martin Reinecke committed
105
106
107
    spaces : None or int or tuple of int, optional
        The indices of subdomains for which the power spectrum shall be
        computed.
Martin Reinecke's avatar
Martin Reinecke committed
108
        If None, all subdomains will be converted.
109
        (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
110
    binbounds : None or array-like, optional
111
        Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
112
113
        if binbounds is None : bins are inferred.
    keep_phase_information : bool, optional
114
115
116
117
118
119
120
121
122
123
124
125
        If False, return a real-valued result containing the power spectrum
        of the input Field.
        If True, return a complex-valued result whose real component
        contains the power spectrum computed from the real part of the
        input Field, and whose imaginary component contains the power
        spectrum computed from the imaginary part of the input Field.
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
126
    Field
127
        The output object. Its domain is a PowerSpace and it contains
Martin Reinecke's avatar
Martin Reinecke committed
128
        the power spectrum of `field`.
129
130
131
132
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
133
134
            logger.warning("WARNING: Field has a space in `domain` which is "
                           "neither harmonic nor a PowerSpace.")
135

136
    spaces = utilities.parse_spaces(spaces, len(field.domain))
137
138
139
140

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

Martin Reinecke's avatar
Martin Reinecke committed
141
    field_real = not utilities.iscomplextype(field.dtype)
142
143
144
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

145
146
147
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
148
149
150
151
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
152
153

    for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
154
        parts = [_single_power_analyze(part, space_index, binbounds)
155
156
157
158
159
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
160
def _create_power_field(domain, power_spectrum):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
161
162
163
164
165
166
167
168
    if not callable(power_spectrum):  # we have a Field living on a PowerSpace
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
169
        fp = power_spectrum
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
170
171
    else:
        power_domain = PowerSpace(domain)
172
        fp = PS_field(power_domain, power_spectrum)
173

Martin Reinecke's avatar
Martin Reinecke committed
174
    return PowerDistributor(domain, power_domain)(fp)
175

176

177
def create_power_operator(domain, power_spectrum, space=None):
Theo Steininger's avatar
Theo Steininger committed
178
    """ Creates a diagonal operator with the given power spectrum.
179

180
    Constructs a diagonal operator that lives over the specified domain.
181

182
183
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
184
    domain : Domain, tuple of Domain or DomainTuple
185
        Domain over which the power operator shall live.
Martin Reinecke's avatar
Martin Reinecke committed
186
187
    power_spectrum : callable or Field
        An object that contains the power spectrum as a function of k.
Martin Reinecke's avatar
Martin Reinecke committed
188
    space : int
Martin Reinecke's avatar
Martin Reinecke committed
189
        the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
190

191
192
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
193
194
    DiagonalOperator
        An operator that implements the given power spectrum.
195
    """
Martin Reinecke's avatar
Martin Reinecke committed
196
    domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
197
    space = utilities.infer_space(domain, space)
Martin Reinecke's avatar
Martin Reinecke committed
198
199
    field = _create_power_field(domain[space], power_spectrum)
    return DiagonalOperator(field, domain, space)
200

201

202
203
204
205
def create_harmonic_smoothing_operator(domain, space, sigma):
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232


def full(domain, val):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.full(domain, val)
    return Field.full(domain, val)


def from_random(random_type, domain, dtype=np.float64, **kwargs):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_random(random_type, domain, dtype, **kwargs)
    return Field.from_random(random_type, domain, dtype, **kwargs)


def from_global_data(domain, arr, sum_up=False):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_global_data(domain, arr, sum_up)
    return Field.from_global_data(domain, arr, sum_up)


def from_local_data(domain, arr):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_local_data(domain, arr)
    return Field.from_local_data(domain, arr)


def makeDomain(domain):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
233
    if isinstance(domain, (MultiDomain, dict)):
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
234
235
        return MultiDomain.make(domain)
    return DomainTuple.make(domain)
236
237


238
def makeOp(input):
Martin Reinecke's avatar
Martin Reinecke committed
239
240
    if input is None:
        return None
Martin Reinecke's avatar
Martin Reinecke committed
241
242
243
    if isinstance(input, Field):
        return DiagonalOperator(input)
    if isinstance(input, MultiField):
Martin Reinecke's avatar
Martin Reinecke committed
244
        return BlockDiagonalOperator(
Martin Reinecke's avatar
Martin Reinecke committed
245
            input.domain, tuple(makeOp(val) for val in input.values()))
Martin Reinecke's avatar
Martin Reinecke committed
246
247
    raise NotImplementedError

Martin Reinecke's avatar
more    
Martin Reinecke committed
248
249
250

def domain_union(domains):
    if isinstance(domains[0], DomainTuple):
Martin Reinecke's avatar
Martin Reinecke committed
251
        if any(dom != domains[0] for dom in domains[1:]):
Martin Reinecke's avatar
more    
Martin Reinecke committed
252
253
254
255
            raise ValueError("domain mismatch")
        return domains[0]
    return MultiDomain.union(domains)

Martin Reinecke's avatar
more    
Martin Reinecke committed
256

257
258
# Arithmetic functions working on Fields

259

260
261
_current_module = sys.modules[__name__]

Jakob Knollmueller's avatar
Jakob Knollmueller committed
262
263
264
for f in ["sqrt", "exp", "log", "tanh", "sigmoid",
          "conjugate", 'sin', 'cos', 'tan', 'sinh', 'cosh',
          'absolute', 'one_over', 'hardplus', 'sinc']:
265
    def func(f):
266
        def func2(x):
Martin Reinecke's avatar
Martin Reinecke committed
267
            from .linearization import Linearization
Martin Reinecke's avatar
Martin Reinecke committed
268
269
            from .operators.operator import Operator
            if isinstance(x, (Field, MultiField, Linearization, Operator)):
Martin Reinecke's avatar
Martin Reinecke committed
270
                return getattr(x, f)()
271
            else:
272
                return getattr(np, f)(x)
273
274
        return func2
    setattr(_current_module, f, func(f))
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

def get_default_codomain(domainoid, space=None):
    """For `RGSpace`, returns the harmonic partner domain.
    For `DomainTuple`, returns a copy of the object in which the domain
    indexed by `space` is substituted by its harmonic partner domain.
    In this case, if `space` is None, it is set to 0 if the `DomainTuple`
    contains exactly one domain.

    Parameters
    ----------
    domain: `RGSpace` or `DomainTuple`
        Domain for which to constuct the default harmonic partner
    space: int
        Optional index of the subdomain to be replaced by its default
        codomain. `domain[space]` must be of class `RGSpace`.
    """
    from .domains.rg_space import RGSpace
    if isinstance(domainoid, RGSpace):
        return domainoid.get_default_codomain()
    if not isinstance(domainoid, DomainTuple):
        raise TypeError(
            'Works only on RGSpaces and DomainTuples containing those')
    space = utilities.infer_space(domainoid, space)
    if not isinstance(domainoid[space], RGSpace):
        raise TypeError("can only codomain RGSpaces")
    ret = [dom for dom in domainoid]
    ret[space] = domainoid[space].get_default_codomain()
    return DomainTuple.make(ret)