sugar.py 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

18
import sys
19

20
import numpy as np
21
22
23

from . import dobj, utilities
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
24
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
25
from .field import Field
26
from .logger import logger
Martin Reinecke's avatar
Martin Reinecke committed
27
28
from .multi_domain import MultiDomain
from .multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
29
from .operators.block_diagonal_operator import BlockDiagonalOperator
Martin Reinecke's avatar
Martin Reinecke committed
30
from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
31
from .operators.distributors import PowerDistributor
32

Martin Reinecke's avatar
step 1  
Martin Reinecke committed
33
34
__all__ = ['PS_field', 'power_analyze', 'create_power_operator',
           'create_harmonic_smoothing_operator', 'from_random',
35
           'full', 'from_global_data', 'from_local_data',
Martin Reinecke's avatar
Martin Reinecke committed
36
           'makeDomain', 'sqrt', 'exp', 'log', 'tanh', 'positive_tanh',
37
38
           'conjugate', 'get_signal_variance', 'makeOp', 'domain_union',
           'get_default_codomain']
39

40

41
def PS_field(pspace, func):
Martin Reinecke's avatar
Martin Reinecke committed
42
43
44
    if not isinstance(pspace, PowerSpace):
        raise TypeError
    data = dobj.from_global_data(func(pspace.k_lengths))
45
    return Field(DomainTuple.make(pspace), data)
Martin Reinecke's avatar
Martin Reinecke committed
46

Martin Reinecke's avatar
Martin Reinecke committed
47

48
49
50
51
52
53
54
55
56
57
58
59
60
def get_signal_variance(spec, space):
    """
    Computes how much a field with a given power spectrum will vary in space

    This is a small helper function that computes how the expected variance
    of a harmonically transformed sample of this power spectrum.

    Parameters
    ---------
    spec: method
        a method that takes one k-value and returns the power spectrum at that
        location
    space: PowerSpace or any harmonic Domain
Martin Reinecke's avatar
Martin Reinecke committed
61
62
63
64
        If this function is given a harmonic domain, it creates the naturally
        binned PowerSpace to that domain.
        The field, for which the signal variance is then computed, is assumed
        to have this PowerSpace as naturally binned PowerSpace
65
66
67
68
    """
    if space.harmonic:
        space = PowerSpace(space)
    if not isinstance(space, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
69
70
        raise ValueError(
            "space must be either a harmonic space or Power space.")
71
72
73
74
75
    field = PS_field(space, spec)
    dist = PowerDistributor(space.harmonic_partner, space)
    k_field = dist(field)
    return k_field.weight(2).sum()

76

77
78
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
79
80
    pd = PowerDistributor(field.domain, power_domain, idx)
    return pd.adjoint_times(field.weight(1)).weight(-1)  # divides by bin size
81
82


Martin Reinecke's avatar
Martin Reinecke committed
83
84
# MR FIXME: this function is not well suited for analyzing more than one
# subdomain at once, because it allows only one set of binbounds.
85
86
def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
Martin Reinecke's avatar
Martin Reinecke committed
87
    """ Computes the power spectrum for a subspace of `field`.
88
89
90
91

    Creates a PowerSpace for the space addressed by `spaces` with the given
    binning and computes the power spectrum as a Field over this
    PowerSpace. This can only be done if the subspace to  be analyzed is a
Martin Reinecke's avatar
Martin Reinecke committed
92
93
    harmonic space. The resulting field has the same units as the square of the
    initial field.
94
95
96
97
98

    Parameters
    ----------
    field : Field
        The field to be analyzed
Martin Reinecke's avatar
Martin Reinecke committed
99
100
101
    spaces : None or int or tuple of int, optional
        The indices of subdomains for which the power spectrum shall be
        computed.
Martin Reinecke's avatar
Martin Reinecke committed
102
        If None, all subdomains will be converted.
103
        (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
104
    binbounds : None or array-like, optional
105
        Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
106
107
        if binbounds is None : bins are inferred.
    keep_phase_information : bool, optional
108
109
110
111
112
113
114
115
116
117
118
119
        If False, return a real-valued result containing the power spectrum
        of the input Field.
        If True, return a complex-valued result whose real component
        contains the power spectrum computed from the real part of the
        input Field, and whose imaginary component contains the power
        spectrum computed from the imaginary part of the input Field.
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
120
    Field
121
        The output object. Its domain is a PowerSpace and it contains
Martin Reinecke's avatar
Martin Reinecke committed
122
        the power spectrum of `field`.
123
124
125
126
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
127
128
            logger.warning("WARNING: Field has a space in `domain` which is "
                           "neither harmonic nor a PowerSpace.")
129

130
    spaces = utilities.parse_spaces(spaces, len(field.domain))
131
132
133
134

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

Martin Reinecke's avatar
Martin Reinecke committed
135
    field_real = not utilities.iscomplextype(field.dtype)
136
137
138
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

139
140
141
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
142
143
144
145
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
146
147

    for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
148
        parts = [_single_power_analyze(part, space_index, binbounds)
149
150
151
152
153
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
154
def _create_power_field(domain, power_spectrum):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
155
156
157
158
159
160
161
162
    if not callable(power_spectrum):  # we have a Field living on a PowerSpace
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
163
        fp = power_spectrum
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
164
165
    else:
        power_domain = PowerSpace(domain)
166
        fp = PS_field(power_domain, power_spectrum)
167

Martin Reinecke's avatar
Martin Reinecke committed
168
    return PowerDistributor(domain, power_domain)(fp)
169

170

171
def create_power_operator(domain, power_spectrum, space=None):
Theo Steininger's avatar
Theo Steininger committed
172
    """ Creates a diagonal operator with the given power spectrum.
173

174
    Constructs a diagonal operator that lives over the specified domain.
175

176
177
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
178
    domain : Domain, tuple of Domain or DomainTuple
179
        Domain over which the power operator shall live.
Martin Reinecke's avatar
Martin Reinecke committed
180
181
    power_spectrum : callable or Field
        An object that contains the power spectrum as a function of k.
Martin Reinecke's avatar
Martin Reinecke committed
182
    space : int
Martin Reinecke's avatar
Martin Reinecke committed
183
        the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
184

185
186
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
187
188
    DiagonalOperator
        An operator that implements the given power spectrum.
189
    """
Martin Reinecke's avatar
Martin Reinecke committed
190
    domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
191
    space = utilities.infer_space(domain, space)
Martin Reinecke's avatar
Martin Reinecke committed
192
193
    field = _create_power_field(domain[space], power_spectrum)
    return DiagonalOperator(field, domain, space)
194

195

196
197
198
199
def create_harmonic_smoothing_operator(domain, space, sigma):
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)
Martin Reinecke's avatar
step 1  
Martin Reinecke committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226


def full(domain, val):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.full(domain, val)
    return Field.full(domain, val)


def from_random(random_type, domain, dtype=np.float64, **kwargs):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_random(random_type, domain, dtype, **kwargs)
    return Field.from_random(random_type, domain, dtype, **kwargs)


def from_global_data(domain, arr, sum_up=False):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_global_data(domain, arr, sum_up)
    return Field.from_global_data(domain, arr, sum_up)


def from_local_data(domain, arr):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_local_data(domain, arr)
    return Field.from_local_data(domain, arr)


def makeDomain(domain):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
227
    if isinstance(domain, (MultiDomain, dict)):
Martin Reinecke's avatar
step 1  
Martin Reinecke committed
228
229
        return MultiDomain.make(domain)
    return DomainTuple.make(domain)
230
231


232
def makeOp(input):
Martin Reinecke's avatar
Martin Reinecke committed
233
234
    if input is None:
        return None
Martin Reinecke's avatar
Martin Reinecke committed
235
236
237
    if isinstance(input, Field):
        return DiagonalOperator(input)
    if isinstance(input, MultiField):
Martin Reinecke's avatar
Martin Reinecke committed
238
        return BlockDiagonalOperator(
Martin Reinecke's avatar
Martin Reinecke committed
239
            input.domain, tuple(makeOp(val) for val in input.values()))
Martin Reinecke's avatar
Martin Reinecke committed
240
241
    raise NotImplementedError

Martin Reinecke's avatar
more  
Martin Reinecke committed
242
243
244

def domain_union(domains):
    if isinstance(domains[0], DomainTuple):
Martin Reinecke's avatar
Martin Reinecke committed
245
        if any(dom != domains[0] for dom in domains[1:]):
Martin Reinecke's avatar
more  
Martin Reinecke committed
246
247
248
249
            raise ValueError("domain mismatch")
        return domains[0]
    return MultiDomain.union(domains)

Martin Reinecke's avatar
more  
Martin Reinecke committed
250

251
252
# Arithmetic functions working on Fields

253

254
255
_current_module = sys.modules[__name__]

Martin Reinecke's avatar
Martin Reinecke committed
256
for f in ["sqrt", "exp", "log", "tanh", "positive_tanh", "conjugate"]:
257
    def func(f):
258
        def func2(x):
Martin Reinecke's avatar
Martin Reinecke committed
259
            from .linearization import Linearization
Martin Reinecke's avatar
Martin Reinecke committed
260
261
            from .operators.operator import Operator
            if isinstance(x, (Field, MultiField, Linearization, Operator)):
Martin Reinecke's avatar
Martin Reinecke committed
262
                return getattr(x, f)()
263
            else:
264
                return getattr(np, f)(x)
265
266
        return func2
    setattr(_current_module, f, func(f))
267

Martin Reinecke's avatar
Martin Reinecke committed
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
def get_default_codomain(domainoid, space=None):
    """For `RGSpace`, returns the harmonic partner domain.
    For `DomainTuple`, returns a copy of the object in which the domain
    indexed by `space` is substituted by its harmonic partner domain.
    In this case, if `space` is None, it is set to 0 if the `DomainTuple`
    contains exactly one domain.

    Parameters
    ----------
    domain: `RGSpace` or `DomainTuple`
        Domain for which to constuct the default harmonic partner
    space: int
        Optional index of the subdomain to be replaced by its default
        codomain. `domain[space]` must be of class `RGSpace`.
    """
    from .domains.rg_space import RGSpace
    if isinstance(domainoid, RGSpace):
        return domainoid.get_default_codomain()
    if not isinstance(domainoid, DomainTuple):
        raise TypeError(
            'Works only on RGSpaces and DomainTuples containing those')
    space = utilities.infer_space(domainoid, space)
    if not isinstance(domainoid[space], RGSpace):
        raise TypeError("can only codomain RGSpaces")
    ret = [dom for dom in domainoid]
    ret[space] = domainoid[space].get_default_codomain()
    return DomainTuple.make(ret)