correlated_fields.py 11.8 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22 23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31 32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34 35
from ..sugar import from_global_data, full, makeDomain

Philipp Arras's avatar
Philipp Arras committed
36

37 38
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
39 40 41
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
42 43
    return logmean, logsig

44

45 46 47
def _lognormal_moment_matching(mean, sig, key):
    key = str(key)
    logmean, logsig = _lognormal_moments(mean, sig)
Philipp Arras's avatar
Philipp Arras committed
48 49
    return _normal(logmean, logsig, key).exp()

50

Philipp Arras's avatar
Philipp Arras committed
51 52 53 54 55
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Arras's avatar
Philipp Arras committed
56 57 58 59
def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])


Philipp Frank's avatar
Philipp Frank committed
60
class _SlopeRemover(EndomorphicOperator):
61
    def __init__(self, domain, logkl):
Philipp Frank's avatar
Philipp Frank committed
62
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
63 64
        assert len(self._domain) == 1
        assert isinstance(self._domain[0], PowerSpace)
65
        self._sc = logkl/float(logkl[-1])
Philipp Frank's avatar
Philipp Frank committed
66
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
67

68 69
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
70 71
        x = x.to_global_data()
        if mode == self.TIMES:
72
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
73
        else:
74
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
75 76
            res += x
            res[-1] -= (x*self._sc).sum()
77
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
78

79

Philipp Arras's avatar
Philipp Arras committed
80 81 82
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
Philipp Arras's avatar
Philipp Arras committed
83 84
        assert len(self._target) == 1
        assert isinstance(self._target[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
        logk_lengths = _log_k_lengths(self._target[0])
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
            res[0] = 0
            res[1] = 0
            res[2:] = np.cumsum(x[1])
            res[2:] = (res[2:] + res[1:-1])/2*self._logvol + x[0]
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
            x[2:] *= self._logvol/2.
110 111
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
112 113 114 115 116 117
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
118 119
        assert len(self._domain) == 1
        assert isinstance(domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
139
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
140 141 142 143 144 145 146
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


147 148 149
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, key):
Philipp Arras's avatar
Philipp Arras committed
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
        dt = twolog._logvol
        sc = np.zeros(twolog.domain.shape)
        sc[0] = sc[1] = np.sqrt(dt)
        sc = from_global_data(twolog.domain, sc)
        expander = VdotOperator(sc).adjoint
        sigmasq = expander @ flexibility

        dist = np.zeros(twolog.domain.shape)
        dist[0] += 1.
        dist = from_global_data(twolog.domain, dist)
        scale = VdotOperator(dist).adjoint @ asperity

        shift = np.ones(scale.target.shape)
        shift[0] = dt**2/12.
        shift = from_global_data(scale.target, shift)
        scale = sigmasq*(Adder(shift) @ scale).sqrt()

        smooth = twolog @ (scale*ducktape(scale.target, None, key))
Philipp Arras's avatar
Philipp Arras committed
183 184 185 186 187 188 189 190
        tg = smooth.target
        logkl = _log_k_lengths(tg[0])
        assert logkl.shape[0] == tg[0].shape[0] - 1
        logkl -= logkl[0]
        logkl = np.insert(logkl, 0, 0)
        noslope = _SlopeRemover(tg, logkl) @ smooth
        _t = VdotOperator(from_global_data(tg, logkl)).adjoint
        smoothslope = _t @ loglogavgslope + noslope
Philipp Arras's avatar
Philipp Arras committed
191 192 193 194 195 196 197 198 199

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
200 201 202 203
        self._op = adder @ ((expander @ fluctuations)*normal_ampl)

        self._domain = self._op.domain
        self._target = self._op.target
Philipp Arras's avatar
Philipp Arras committed
204

205 206 207
    def apply(self, x):
        self._check_input(x)
        return self._op(x)
Philipp Arras's avatar
Philipp Arras committed
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

class CorrelatedFieldMaker:
    def __init__(self):
        self._a = []

    def add_fluctuations(self,
                         target,
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
                         prefix=''):
Philipp Arras's avatar
Philipp Arras committed
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
249
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
250
                        prefix + 'loglogavgslope')
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        self._a.append(
            _Amplitude(target, fluct, flex, asp, avgsl, prefix + 'spectrum'))

    def finalize_from_op(self, zeromode, prefix=''):
        assert isinstance(zeromode, Operator)
        hspace = makeDomain([dd.target[0].harmonic_partner for dd in self._a])
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ zeromode

        n_amplitudes = len(self._a)
        ht = HarmonicTransformOperator(hspace, space=0)
        for i in range(1, n_amplitudes):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht

        pd = PowerDistributor(hspace, self._a[0].target[0], 0)
        for i in range(1, n_amplitudes):
            foo = PowerDistributor(pd.domain, self._a[i].target[0], space=i)
            pd = pd @ foo

        spaces = tuple(range(n_amplitudes))
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[(i + 1):])
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
278

279
        return ht(azm*(pd @ a)*ducktape(hspace, None, prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
280 281 282 283

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
284
                 prefix='',
Philipp Arras's avatar
Philipp Arras committed
285 286 287 288 289 290 291 292 293
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
294
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
295 296 297 298
            offset = float(offset)
        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
299
        return self.finalize_from_op(azm, prefix)
Philipp Arras's avatar
Philipp Arras committed
300 301 302

    @property
    def amplitudes(self):
303
        return self._a
304

305 306
    def effective_total_fluctuation(self,
                                    fluctuations_means,
307
                                    fluctuations_stddevs,
308
                                    nsamples=100):
309
        namps = len(fluctuations_means)
310 311
        xis = np.random.normal(size=namps*nsamples).reshape((namps, nsamples))
        q = np.ones(nsamples)
312 313 314 315
        for i in range(len(fluctuations_means)):
            m, sig = _lognormal_moments(fluctuations_means[i],
                                        fluctuations_stddevs[i])
            f = np.exp(m + sig*xis[i])
316 317
            q *= (1. + f**2)
        q = np.sqrt(q - 1.)
318
        return np.mean(q), np.std(q)