nifty_lm.py 77.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
#
# Copyright (C) 2015 Max-Planck-Society
#
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  lm
    ..                               /______/

    NIFTY submodule for grids on the two-sphere.

"""
from __future__ import division
35

Marco Selig's avatar
Marco Selig committed
36
37
38
39
40
import os
import numpy as np
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
41
42
43
44
45
46
47

from nifty.nifty_core import space,\
                             point_space,\
                             field
from keepers import about,\
                    global_configuration as gc,\
                    global_dependency_injector as gdi
Ultimanet's avatar
Ultimanet committed
48
from nifty.nifty_paradict import lm_space_paradict,\
49
50
51
52
                                 gl_space_paradict,\
                                 hp_space_paradict
from nifty.nifty_power_indices import lm_power_indices

Ultimanet's avatar
Ultimanet committed
53
from nifty.nifty_random import random
54

Ultima's avatar
Ultima committed
55
56
gl = gdi.get('libsharp_wrapper_gl')
hp = gdi.get('healpy')
57
58

LM_DISTRIBUTION_STRATEGIES = []
Ultima's avatar
Ultima committed
59
60
GL_DISTRIBUTION_STRATEGIES = []
HP_DISTRIBUTION_STRATEGIES = []
Marco Selig's avatar
Marco Selig committed
61
62


63
class lm_space(point_space):
Marco Selig's avatar
Marco Selig committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.
        mmax : int, *optional*
            Maximum :math:`m`-value up to which the spherical harmonics
            coefficients are to be used (default: `lmax`).
83
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            Data type of the field values (default: numpy.complex128).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        Notes
        -----
        Hermitian symmetry, i.e. :math:`a_{\ell -m} = \overline{a}_{\ell m}` is
        always assumed for the spherical harmonics components, i.e. only fields
        on the two-sphere with real-valued representations in position space
        can be handled.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `lmax` and
            `mmax`.
113
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
114
115
116
117
118
119
120
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that an :py:class:`lm_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`lm_space`, which is always 1.
    """
121
122

    def __init__(self, lmax, mmax=None, dtype=np.dtype('complex128'),
123
                 datamodel='np', comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
124
125
126
127
128
129
130
131
132
133
134
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.
            mmax : int, *optional*
                Maximum :math:`m`-value up to which the spherical harmonics
                coefficients are to be used (default: `lmax`).
135
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
                Data type of the field values (default: numpy.complex128).

            Returns
            -------
            None.

            Raises
            ------
            ImportError
                If neither the libsharp_wrapper_gl nor the healpy module are
                available.
            ValueError
                If input `nside` is invaild.

        """
151

152
        # check imports
Ultima's avatar
Ultima committed
153
        if not gc['use_libsharp'] and not gc['use_healpy']:
154
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
155
                "ERROR: neither libsharp_wrapper_gl nor healpy activated."))
156

157
        self.paradict = lm_space_paradict(lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
158

159
160
161
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('complex64'), np.dtype('complex128')]:
Marco Selig's avatar
Marco Selig committed
162
            about.warnings.cprint("WARNING: data type set to default.")
163
164
            dtype = np.dtype('complex128')
        self.dtype = dtype
165

166
        # set datamodel
167
168
169
170
        if datamodel not in ['np']:
            about.warnings.cprint("WARNING: datamodel set to default.")
            self.datamodel = 'np'
        else:
171
172
            self.datamodel = datamodel

Marco Selig's avatar
Marco Selig committed
173
        self.discrete = True
174
        self.harmonic = True
175
        self.distances = (np.float(1),)
176
        self.comm = self._parse_comm(comm)
177
178
179
180
181
182
183

        self.power_indices = lm_power_indices(
                    lmax=self.paradict['lmax'],
                    dim=self.get_dim(),
                    comm=self.comm,
                    datamodel=self.datamodel,
                    allowed_distribution_strategies=LM_DISTRIBUTION_STRATEGIES)
Marco Selig's avatar
Marco Selig committed
184

185
186
    @property
    def para(self):
187
        temp = np.array([self.paradict['lmax'],
188
189
                         self.paradict['mmax']], dtype=int)
        return temp
190

191
192
193
194
195
    @para.setter
    def para(self, x):
        self.paradict['lmax'] = x[0]
        self.paradict['mmax'] = x[1]

Ultima's avatar
Ultima committed
196
197
198
199
200
201
202
203
204
205
206
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
                if ii[0] not in ['power_indices', 'comm']]
        temp.append(('comm', self.comm.__hash__()))
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

207
    def copy(self):
208
209
210
211
        return lm_space(lmax=self.paradict['lmax'],
                        mmax=self.paradict['mmax'],
                        dtype=self.dtype)

212
    def get_shape(self):
Ultima's avatar
Ultima committed
213
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
214
215
        mmax = self.paradict['mmax']
        return (np.int((mmax + 1) * (lmax + 1) - ((mmax + 1) * mmax) // 2),)
216
217

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        """
            Computes the number of degrees of freedom of the space, taking into
            account symmetry constraints and complex-valuedness.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            The number of degrees of freedom is reduced due to the hermitian
            symmetry, which is assumed for the spherical harmonics components.
        """
232
233
        # dof = 2*dim-(lmax+1) = (lmax+1)*(2*mmax+1)*(mmax+1)*mmax
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
234
        mmax = self.paradict['mmax']
235
236
237
238
239
        dof = np.int((lmax + 1) * (2 * mmax + 1) - (mmax + 1) * mmax)
        if split:
            return (dof, )
        else:
            return dof
Marco Selig's avatar
Marco Selig committed
240

241
    def get_meta_volume(self, split=False):
Marco Selig's avatar
Marco Selig committed
242
        """
243
            Calculates the meta volumes.
Marco Selig's avatar
Marco Selig committed
244

245
246
247
248
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.
Marco Selig's avatar
Marco Selig committed
249
250
251

            Parameters
            ----------
252
253
254
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).
Marco Selig's avatar
Marco Selig committed
255
256
257

            Returns
            -------
258
259
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.
Marco Selig's avatar
Marco Selig committed
260

261
262
263
264
265
            Notes
            -----
            The spherical harmonics components with :math:`m=0` have meta
            volume 1, the ones with :math:`m>0` have meta volume 2, sinnce they
            each determine another component with negative :math:`m`.
Marco Selig's avatar
Marco Selig committed
266
        """
267
268
269
270
271
272
        if not split:
            return np.float(self.get_dof())
        else:
            mol = self.cast(1, dtype=np.float)
            mol[self.paradict['lmax'] + 1:] = 2  # redundant: (l,m) and (l,-m)
            return mol
Marco Selig's avatar
Marco Selig committed
273

274
275
276
277
278
279
280
281
282
    def _cast_to_d2o(self, x, dtype=None, hermitianize=True, **kwargs):
        raise NotImplementedError

    def _cast_to_np(self, x, dtype=None, hermitianize=True, **kwargs):
        casted_x = super(lm_space, self)._cast_to_np(x=x,
                                                     dtype=dtype,
                                                     **kwargs)
        complexity_mask = np.iscomplex(casted_x[:self.paradict['lmax']+1])
        if np.any(complexity_mask):
Ultima's avatar
Ultima committed
283
            about.warnings.cprint("WARNING: Taking the absolute values for " +
284
285
286
287
                                  "all complex entries where lmax==0")
            casted_x[complexity_mask] = np.abs(casted_x[complexity_mask])
        return casted_x

288
    # TODO: Extend to binning/log
289
290
291
292
293
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['lmax'] + 1
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
294
295
296
297
298
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)

    def check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        """
            Checks whether a given codomain is compatible to the
            :py:class:`lm_space` or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`lm_space`,
            :py:class:`gl_space`, and :py:class:`hp_space`.
        """
318
319
        if codomain is None:
            return False
320

321
322
323
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty lm_space."))
Marco Selig's avatar
Marco Selig committed
324

325
326
327
        if self.comm is not codomain.comm:
            return False

328
329
330
        if self.datamodel is not codomain.datamodel:
            return False

331
332
333
        elif isinstance(codomain, gl_space):
            # lmax==mmax
            # nlat==lmax+1
334
            # nlon==2*lmax+1
335
336
337
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (codomain.paradict['nlat'] == self.paradict['lmax']+1) and
                    (codomain.paradict['nlon'] == 2*self.paradict['lmax']+1)):
Marco Selig's avatar
Marco Selig committed
338
339
                return True

340
341
342
343
344
        elif isinstance(codomain, hp_space):
            # lmax==mmax
            # 3*nside-1==lmax
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (3*codomain.paradict['nside']-1 == self.paradict['lmax'])):
Marco Selig's avatar
Marco Selig committed
345
346
347
348
                return True

        return False

349
    def get_codomain(self, coname=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  a pixelization of the two-sphere.

            Parameters
            ----------
            coname : string, *optional*
                String specifying a desired codomain (default: None).

            Returns
            -------
            codomain : nifty.space
                A compatible codomain.

            Notes
            -----
            Possible arguments for `coname` are ``'gl'`` in which case a Gauss-
            Legendre pixelization [#]_ of the sphere is generated, and ``'hp'``
            in which case a HEALPix pixelization [#]_ is generated.

            References
            ----------
            .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
                   High-Resolution Discretization and Fast Analysis of Data
                   Distributed on the Sphere", *ApJ* 622..759G.
375
376
            .. [#] M. Reinecke and D. Sverre Seljebotn, 2013,
                   "Libsharp - spherical
Marco Selig's avatar
Marco Selig committed
377
378
379
380
                   harmonic transforms revisited";
                   `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        """
381
382
383
384
385
        if coname == 'gl' or (coname is None and gc['lm2gl']):
            if self.dtype == np.dtype('complex64'):
                new_dtype = np.float32
            elif self.dtype == np.dtype('complex128'):
                new_dtype = np.float64
Marco Selig's avatar
Marco Selig committed
386
            else:
387
388
389
                raise NotImplementedError
            nlat = self.paradict['lmax'] + 1
            nlon = self.paradict['lmax'] * 2 + 1
390
391
392
393
            return gl_space(nlat=nlat, nlon=nlon, dtype=new_dtype,
                            datamodel=self.datamodel,
                            comm=self.comm)

394
395
        elif coname == 'hp' or (coname is None and not gc['lm2gl']):
            nside = (self.paradict['lmax']+1) // 3
396
397
398
399
            return hp_space(nside=nside,
                            datamodel=self.datamodel,
                            comm=self.comm)

Marco Selig's avatar
Marco Selig committed
400
        else:
401
            raise ValueError(about._errors.cstring(
402
403
404
405
406
407
408
409
410
411
412
413
                "ERROR: unsupported or incompatible codomain '"+coname+"'."))

    def get_random_values(self, **kwargs):
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account complex-valuedness and
            hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.
Marco Selig's avatar
Marco Selig committed
414

415
416
417
418
419
420
            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
421

422
423
424
425
426
427
                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given
                    standard
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)
Marco Selig's avatar
Marco Selig committed
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
            spec : {scalar, list, numpy.array, nifty.field, function},
                *optional*
                Power spectrum (default: 1).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
        arg = random.parse_arguments(self, **kwargs)

        if arg is None:
            return np.zeros(self.get_shape(), dtype=self.dtype)

Ultima's avatar
Ultima committed
448
        elif arg['random'] == "pm1":
449
450
451
            x = random.pm1(dtype=self.dtype, shape=self.get_shape())
            return self.cast(x)

Ultima's avatar
Ultima committed
452
        elif arg['random'] == "gau":
453
454
            x = random.gau(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
455
456
                           mean=arg['mean'],
                           std=arg['std'])
457
458
            return self.cast(x)

Ultima's avatar
Ultima committed
459
        elif arg['random'] == "syn":
460
461
462
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
463
464
                if gc['use_libsharp']:
                    x = gl.synalm_f(arg['spec'], lmax=lmax, mmax=mmax)
465
                else:
Ultima's avatar
Ultima committed
466
                    x = hp.synalm(arg['spec'].astype(np.complex128),
467
468
                                  lmax=lmax, mmax=mmax).astype(np.complex64)
            else:
Ultima's avatar
Ultima committed
469
470
                if gc['use_healpy']:
                    x = hp.synalm(arg['spec'], lmax=lmax, mmax=mmax)
471
                else:
Ultima's avatar
Ultima committed
472
                    x = gl.synalm(arg['spec'], lmax=lmax, mmax=mmax)
473
474
            return x

Ultima's avatar
Ultima committed
475
        elif arg['random'] == "uni":
476
477
            x = random.uni(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
478
479
                           vmin=arg['vmin'],
                           vmax=arg['vmax'])
480
481
482
483
            return self.cast(x)

        else:
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
484
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
485

486
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
        """
            Computes the discrete inner product of two given arrays of field
            values.

            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array

            Returns
            -------
            dot : scalar
                Inner product of the two arrays.
        """
503
504
505
        x = self.cast(x)
        y = self.cast(y)

Ultima's avatar
Ultima committed
506
        if gc['use_libsharp']:
507
508
509
510
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
                return gl.dotlm_f(x, y, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
511
            else:
512
                return gl.dotlm(x, y, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
513
        else:
514
            return self._dotlm(x, y)
Ultima's avatar
Ultima committed
515

516
517
518
519
520
521
522
    def _dotlm(self, x, y):
        lmax = self.paradict['lmax']
        dot = np.sum(x.real[:lmax + 1] * y.real[:lmax + 1])
        dot += 2 * np.sum(x.real[lmax + 1:] * y.real[lmax + 1:])
        dot += 2 * np.sum(x.imag[lmax + 1:] * y.imag[lmax + 1:])
        return dot

523
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
524
525
526
527
528
529
530
531
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
532
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
533
534
535
536
537
538
539
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
540
        x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
541

542
543
        if codomain is None:
            codomain = self.get_codomain()
Marco Selig's avatar
Marco Selig committed
544

545
546
547
548
        # Check if the given codomain is suitable for the transformation
        if not self.check_codomain(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported codomain."))
Marco Selig's avatar
Marco Selig committed
549

550
551
552
553
554
        if isinstance(codomain, gl_space):
            nlat = codomain.paradict['nlat']
            nlon = codomain.paradict['nlon']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
Marco Selig's avatar
Marco Selig committed
555

556
            # transform
557
558
559
            if self.dtype == np.dtype('complex64'):
                Tx = gl.alm2map_f(x, nlat=nlat, nlon=nlon,
                                  lmax=lmax, mmax=mmax, cl=False)
Marco Selig's avatar
Marco Selig committed
560
            else:
561
562
563
564
                Tx = gl.alm2map(x, nlat=nlat, nlon=nlon,
                                lmax=lmax, mmax=mmax, cl=False)
            # re-weight if discrete
            if codomain.discrete:
565
                Tx = codomain.calc_weight(Tx, power=0.5)
Marco Selig's avatar
Marco Selig committed
566

567
568
569
570
571
        elif isinstance(codomain, hp_space):
            nside = codomain.paradict['nside']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']

572
            # transform
573
574
575
576
            Tx = hp.alm2map(x.astype(np.complex128), nside, lmax=lmax,
                            mmax=mmax, pixwin=False, fwhm=0.0, sigma=None,
                            invert=False, pol=True, inplace=False)
            # re-weight if discrete
Marco Selig's avatar
Marco Selig committed
577
            if(codomain.discrete):
578
                Tx = codomain.calc_weight(Tx, power=0.5)
Marco Selig's avatar
Marco Selig committed
579
580

        else:
581
582
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported transformation."))
Marco Selig's avatar
Marco Selig committed
583

584
        return Tx.astype(codomain.dtype)
Marco Selig's avatar
Marco Selig committed
585

586
    def calc_smooth(self, x, sigma=0, **kwargs):
Marco Selig's avatar
Marco Selig committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel in position space.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """
605
        x = self.cast(x)
606
        # check sigma
607
        if sigma == 0:
Marco Selig's avatar
Marco Selig committed
608
            return x
609
        elif sigma == -1:
Marco Selig's avatar
Marco Selig committed
610
            about.infos.cprint("INFO: invalid sigma reset.")
611
612
            sigma = np.sqrt(2) * np.pi / (self.paradict['lmax'] + 1)
        elif sigma < 0:
Marco Selig's avatar
Marco Selig committed
613
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))
Ultima's avatar
Ultima committed
614
        if gc['use_healpy']:
615
616
617
            return hp.smoothalm(x, fwhm=0.0, sigma=sigma, invert=False,
                                pol=True, mmax=self.paradict['mmax'],
                                verbose=False, inplace=False)
Marco Selig's avatar
Marco Selig committed
618
        else:
619
620
621
            return gl.smoothalm(x, lmax=self.paradict['lmax'],
                                mmax=self.paradict['mmax'],
                                fwhm=0.0, sigma=sigma, overwrite=False)
Marco Selig's avatar
Marco Selig committed
622

623
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.
        """
638
639
640
641
        x = self.cast(x)
        lmax = self.paradict['lmax']
        mmax = self.paradict['mmax']

642
        # power spectrum
643
        if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
644
            if gc['use_libsharp']:
645
                return gl.anaalm_f(x, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
646
            else:
647
648
649
                return hp.alm2cl(x.astype(np.complex128), alms2=None,
                                 lmax=lmax, mmax=mmax, lmax_out=lmax,
                                 nspec=None).astype(np.float32)
Marco Selig's avatar
Marco Selig committed
650
        else:
Ultima's avatar
Ultima committed
651
            if gc['use_healpy']:
652
653
                return hp.alm2cl(x, alms2=None, lmax=lmax, mmax=mmax,
                                 lmax_out=lmax, nspec=None)
Marco Selig's avatar
Marco Selig committed
654
            else:
655
                return gl.anaalm(x, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
656

657
658
659
    def get_plot(self, x, title="", vmin=None, vmax=None, power=True,
                 norm=None, cmap=None, cbar=True, other=None, legend=False,
                 mono=True, **kwargs):
Marco Selig's avatar
Marco Selig committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: True).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).

        """
704
        if(not pl.isinteractive())and(not bool(kwargs.get("save", False))):
Marco Selig's avatar
Marco Selig committed
705
706
707
708
709
            about.warnings.cprint("WARNING: interactive mode off.")

        if(power):
            x = self.calc_power(x)

710
711
712
            fig = pl.figure(num=None, figsize=(6.4, 4.8), dpi=None, facecolor="none",
                            edgecolor="none", frameon=False, FigureClass=pl.Figure)
            ax0 = fig.add_axes([0.12, 0.12, 0.82, 0.76])
Marco Selig's avatar
Marco Selig committed
713

714
            xaxes = np.arange(self.para[0] + 1, dtype=np.int)
Marco Selig's avatar
Marco Selig committed
715
            if(vmin is None):
716
717
                vmin = np.min(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
718
            if(vmax is None):
719
720
721
722
                vmax = np.max(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
            ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * x)[1:], color=[0.0,
                                                                            0.5, 0.0], label="graph 0", linestyle='-', linewidth=2.0, zorder=1)
Marco Selig's avatar
Marco Selig committed
723
            if(mono):
724
725
                ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), x[0], s=20, color=[0.0, 0.5, 0.0], marker='o',
                            cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=1)
Marco Selig's avatar
Marco Selig committed
726
727

            if(other is not None):
728
                if(isinstance(other, tuple)):
Marco Selig's avatar
Marco Selig committed
729
730
                    other = list(other)
                    for ii in xrange(len(other)):
731
                        if(isinstance(other[ii], field)):
Marco Selig's avatar
Marco Selig committed
732
733
734
                            other[ii] = other[ii].power(**kwargs)
                        else:
                            other[ii] = self.enforce_power(other[ii])
735
                elif(isinstance(other, field)):
Marco Selig's avatar
Marco Selig committed
736
737
738
                    other = [other.power(**kwargs)]
                else:
                    other = [self.enforce_power(other)]
739
                imax = max(1, len(other) - 1)
Marco Selig's avatar
Marco Selig committed
740
                for ii in xrange(len(other)):
741
742
                    ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * other[ii])[1:], color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)
                                                                                            ** 2, max(0.0, 1.0 - (2 * (ii - imax) / imax)**2)], label="graph " + str(ii + 1), linestyle='-', linewidth=1.0, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
743
                    if(mono):
744
745
                        ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), other[ii][0], s=20, color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)**2, max(
                            0.0, 1.0 - (2 * (ii - imax) / imax)**2)], marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
746
747
748
                if(legend):
                    ax0.legend()

749
            ax0.set_xlim(xaxes[1], xaxes[-1])
Marco Selig's avatar
Marco Selig committed
750
            ax0.set_xlabel(r"$\ell$")
751
            ax0.set_ylim(vmin, vmax)
Marco Selig's avatar
Marco Selig committed
752
753
754
755
            ax0.set_ylabel(r"$\ell(2\ell+1) C_\ell$")
            ax0.set_title(title)

        else:
Ultima's avatar
Ultima committed
756
            x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
757
758
759
            if(np.iscomplexobj(x)):
                if(title):
                    title += " "
760
761
762
763
764
765
                if(bool(kwargs.get("save", False))):
                    save_ = os.path.splitext(
                        os.path.basename(str(kwargs.get("save"))))
                    kwargs.update(save=save_[0] + "_absolute" + save_[1])
                self.get_plot(np.absolute(x), title=title + "(absolute)", vmin=vmin, vmax=vmax,
                              power=False, norm=norm, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)
Marco Selig's avatar
Marco Selig committed
766
767
768
769
#                self.get_plot(np.real(x),title=title+"(real part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
#                self.get_plot(np.imag(x),title=title+"(imaginary part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
                if(cmap is None):
                    cmap = pl.cm.hsv_r
770
771
772
773
774
                if(bool(kwargs.get("save", False))):
                    kwargs.update(save=save_[0] + "_phase" + save_[1])
                self.get_plot(np.angle(x, deg=False), title=title + "(phase)", vmin=-3.1416, vmax=3.1416, power=False,
                              norm=None, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)  # values in [-pi,pi]
                return None  # leave method
Marco Selig's avatar
Marco Selig committed
775
776
            else:
                if(vmin is None):
777
                    vmin = np.min(x, axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
778
                if(vmax is None):
779
780
781
782
783
784
785
786
787
788
                    vmax = np.max(x, axis=None, out=None)
                if(norm == "log")and(vmin <= 0):
                    raise ValueError(about._errors.cstring(
                        "ERROR: nonpositive value(s)."))

                # not a number
                xmesh = np.nan * \
                    np.empty(self.para[::-1] + 1, dtype=np.float16, order='C')
                xmesh[4, 1] = None
                xmesh[1, 4] = None
Marco Selig's avatar
Marco Selig committed
789
                lm = 0
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
                for mm in xrange(self.para[1] + 1):
                    xmesh[mm][mm:] = x[lm:lm + self.para[0] + 1 - mm]
                    lm += self.para[0] + 1 - mm

                s_ = np.array([1, self.para[1] / self.para[0]
                               * (1.0 + 0.159 * bool(cbar))])
                fig = pl.figure(num=None, figsize=(
                    6.4 * s_[0], 6.4 * s_[1]), dpi=None, facecolor="none", edgecolor="none", frameon=False, FigureClass=pl.Figure)
                ax0 = fig.add_axes(
                    [0.06 / s_[0], 0.06 / s_[1], 1.0 - 0.12 / s_[0], 1.0 - 0.12 / s_[1]])
                ax0.set_axis_bgcolor([0.0, 0.0, 0.0, 0.0])

                xaxes = np.arange(self.para[0] + 2, dtype=np.int) - 0.5
                yaxes = np.arange(self.para[1] + 2, dtype=np.int) - 0.5
                if(norm == "log"):
                    n_ = ln(vmin=vmin, vmax=vmax)
Marco Selig's avatar
Marco Selig committed
806
807
                else:
                    n_ = None
808
809
810
811
                sub = ax0.pcolormesh(xaxes, yaxes, np.ma.masked_where(np.isnan(
                    xmesh), xmesh), cmap=cmap, norm=n_, vmin=vmin, vmax=vmax, clim=(vmin, vmax))
                ax0.set_xlim(xaxes[0], xaxes[-1])
                ax0.set_xticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
812
                ax0.set_xlabel(r"$\ell$")
813
814
                ax0.set_ylim(yaxes[0], yaxes[-1])
                ax0.set_yticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
815
816
817
                ax0.set_ylabel(r"$m$")
                ax0.set_aspect("equal")
                if(cbar):
818
819
820
821
822
823
                    if(norm == "log"):
                        f_ = lf(10, labelOnlyBase=False)
                        b_ = sub.norm.inverse(
                            np.linspace(0, 1, sub.cmap.N + 1))
                        v_ = np.linspace(
                            sub.norm.vmin, sub.norm.vmax, sub.cmap.N)
Marco Selig's avatar
Marco Selig committed
824
825
826
827
                    else:
                        f_ = None
                        b_ = None
                        v_ = None
828
829
                    fig.colorbar(sub, ax=ax0, orientation="horizontal", fraction=0.1, pad=0.05, shrink=0.75, aspect=20, ticks=[
                                 vmin, vmax], format=f_, drawedges=False, boundaries=b_, values=v_)
Marco Selig's avatar
Marco Selig committed
830
831
                ax0.set_title(title)

832
833
834
        if(bool(kwargs.get("save", False))):
            fig.savefig(str(kwargs.get("save")), dpi=None, facecolor="none", edgecolor="none", orientation="portrait",
                        papertype=None, format=None, transparent=False, bbox_inches=None, pad_inches=0.1)
Marco Selig's avatar
Marco Selig committed
835
836
837
838
            pl.close(fig)
        else:
            fig.canvas.draw()

839
840
841
842
843
844
845
846
    def getlm(self):  # > compute all (l,m)
        index = np.arange(self.get_dim())
        n = 2 * self.paradict['lmax'] + 1
        m = np.ceil(
            (n - np.sqrt(n**2 - 8 * (index - self.paradict['lmax']))) / 2
                    ).astype(np.int)
        l = index - self.paradict['lmax'] * m + m * (m - 1) // 2
        return l, m
Marco Selig's avatar
Marco Selig committed
847
848


849
class gl_space(point_space):
Marco Selig's avatar
Marco Selig committed
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
    """
        ..                 __
        ..               /  /
        ..     ____ __  /  /
        ..   /   _   / /  /
        ..  /  /_/  / /  /_
        ..  \___   /  \___/  space class
        .. /______/

        NIFTY subclass for Gauss-Legendre pixelizations [#]_ of the two-sphere.

        Parameters
        ----------
        nlat : int
            Number of latitudinal bins, or rings.
        nlon : int, *optional*
            Number of longitudinal bins (default: ``2*nlat - 1``).
867
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
868
869
870
871
872
873
874
875
876
877
            Data type of the field values (default: numpy.float64).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only real-valued fields on the two-sphere are supported, i.e.
878
        `dtype` has to be either numpy.float64 or numpy.float32.
Marco Selig's avatar
Marco Selig committed
879
880
881
882
883
884
885
886
887
888
889
890
891
892

        References
        ----------
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `nlat` and `nlon`.
893
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
894
895
896
897
898
899
900
            Data type of the field values.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array containing the pixel sizes.
    """
901

Ultima's avatar
Ultima committed
902
    def __init__(self, nlat, nlon=None, dtype=np.dtype('float64'),
903
                 datamodel='np', comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
904
905
906
907
908
909
910
911
912
        """
            Sets the attributes for a gl_space class instance.

            Parameters
            ----------
            nlat : int
                Number of latitudinal bins, or rings.
            nlon : int, *optional*
                Number of longitudinal bins (default: ``2*nlat - 1``).
913
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
914
915
916
917
918
919
920
921
922
923
924
925
926
927
                Data type of the field values (default: numpy.float64).

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the libsharp_wrapper_gl module is not available.
            ValueError
                If input `nlat` is invaild.

        """
928
        # check imports
Ultima's avatar
Ultima committed
929
        if not gc['use_libsharp']:
930
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
931
                "ERROR: libsharp_wrapper_gl not loaded."))
932
933

        self.paradict = gl_space_paradict(nlat=nlat, nlon=nlon)
Marco Selig's avatar
Marco Selig committed
934

935
936
937
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('float32'), np.dtype('float64')]:
Marco Selig's avatar
Marco Selig committed
938
            about.warnings.cprint("WARNING: data type set to default.")
939
940
            dtype = np.dtype('float')
        self.dtype = dtype
941

942
        # set datamodel
943
944
945
946
        if datamodel not in ['np']:
            about.warnings.cprint("WARNING: datamodel set to default.")
            self.datamodel = 'np'
        else:
947
            self.datamodel = datamodel
Marco Selig's avatar
Marco Selig committed
948
949

        self.discrete = False
950
        self.harmonic = False
951
952
953
        self.distances = tuple(gl.vol(self.paradict['nlat'],
                                      nlon=self.paradict['nlon']
                                      ).astype(np.float))
954
        self.comm = self._parse_comm(comm)
955
956
957

    @property
    def para(self):
958
        temp = np.array([self.paradict['nlat'],
959
960
                         self.paradict['nlon']], dtype=int)
        return temp
961

962
963
964
965
    @para.setter
    def para(self, x):
        self.paradict['nlat'] = x[0]
        self.paradict['nlon'] = x[1]
966

967
    def copy(self):
968
969
970
971
        return gl_space(nlat=self.paradict['nlat'],
                        nlon=self.paradict['nlon'],
                        dtype=self.dtype)

972
    def get_shape(self):
973
974
975
        return (np.int((self.paradict['nlat'] * self.paradict['nlon'])),)

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
976
977
978
979
980
981
982
983
984
985
986
987
988
        """
            Computes the number of degrees of freedom of the space.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            Since the :py:class:`gl_space` class only supports real-valued
            fields, the number of degrees of freedom is the number of pixels.
        """
Ultima's avatar
Ultima committed
989
990
991
992
        if split:
            return self.get_shape()
        else:
            return self.get_dim()
Marco Selig's avatar
Marco Selig committed
993

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    def get_meta_volume(self, split=False):
        """
            Calculates the meta volumes.

            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.

            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).

            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.

            Notes
            -----
            For Gauss-Legendre pixelizations, the meta volumes are the pixel
            sizes.
        """
        if not split:
            return np.float(4 * np.pi)
        else:
            mol = self.cast(1, dtype=np.float)
            return self.calc_weight(mol, power=1)

1025
    # TODO: Extend to binning/log
1026
1027
1028
1029
1030
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['nlat']
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
1031
1032
1033
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)
Marco Selig's avatar
Marco Selig committed
1034

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    def check_codomain(self, codomain):
        """
            Checks whether a given codomain is compatible to the space or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`gl_space` and
            :py:class:`lm_space`.
        """
        if codomain is None:
            return False

Ultima's avatar
Ultima committed
1057
1058
1059
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))

1060
1061
1062
        if self.datamodel is not codomain.datamodel:
            return False

1063
1064
1065
        if self.comm is not codomain.comm:
            return False

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
        if isinstance(codomain, lm_space):
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = codomain.paradict['lmax']
            mmax = codomain.paradict['mmax']
            # nlon==2*lat-1
            # lmax==nlat-1
            # lmax==mmax
            if (nlon == 2*nlat-1) and (lmax == nlat-1) and (lmax == mmax):
                return True

        return False

    def get_codomain(self, **kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  an instance of the :py:class:`lm_space` class.

            Returns
            -------
            codomain : nifty.lm_space
                A compatible codomain.
        """
        nlat = self.paradict['nlat']
        lmax = nlat-1
        mmax = nlat-1
        # lmax,mmax = nlat-1,nlat-1
        if self.dtype == np.dtype('float32'):
1094
1095
1096
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex64,
                            datamodel=self.datamodel,
                            comm=self.comm)
1097
        else:
1098
1099
1100
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex128,
                            datamodel=self.datamodel,
                            comm=self.comm)
1101

1102
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        """
            Generates random field values according to the specifications given
            by the parameters.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
Ultima's avatar
Ultima committed
1120
1121
                - "gau" (normal distribution with zero-mean and a given
                standard
Marco Selig's avatar
Marco Selig committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
Ultima's avatar
Ultima committed
1132
1133
            spec : {scalar, list, numpy.array, nifty.field, function},
            *optional*
Marco Selig's avatar
Marco Selig committed
1134
1135
1136
1137
1138
1139
1140
1141
                Power spectrum (default: 1).
            codomain : nifty.lm_space, *optional*
                A compatible codomain for power indexing (default: None).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
1142
        arg = random.parse_arguments(self, **kwargs)
1143

1144
1145
        if(arg is None):
            x = np.zeros(self.get_shape(), dtype=self.dtype)
Marco Selig's avatar
Marco Selig committed
1146

Ultima's avatar
Ultima committed
1147
        elif(arg['random'] == "pm1"):
1148
            x = random.pm1(dtype=self.dtype, shape=self.get_shape())
1149

Ultima's avatar
Ultima committed
1150
        elif(arg['random'] == "gau"):
1151
1152
            x = random.gau(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
1153
1154
                           mean=arg['mean'],
                           std=arg['std'])
Marco Selig's avatar
Marco Selig committed
1155

Ultima's avatar
Ultima committed
1156
        elif(arg['random'] == "syn"):
1157
1158
1159
1160
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = nlat - 1
            if self.dtype == np.dtype('float32'):
Ultima's avatar
Ultima committed
1161
                x = gl.synfast_f(arg['syn'],
1162
1163
                                 nlat=nlat, nlon=nlon,
                                 lmax=lmax, mmax=lmax, alm=False)
Marco Selig's avatar
Marco Selig committed
1164
            else:
Ultima's avatar
Ultima committed
1165
                x = gl.synfast(arg['syn'],
1166
1167
1168
1169
1170
                               nlat=nlat, nlon=nlon,
                               lmax=lmax, mmax=lmax, alm=False)
            # weight if discrete
            if self.discrete:
                x = self.calc_weight(x, power=0.5)
Marco Selig's avatar
Marco Selig committed
1171

Ultima's avatar
Ultima committed
1172
        elif(arg['random'] == "uni"):
1173
1174
            x = random.uni(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
1175
1176
                           vmin=arg['vmin'],
                           vmax=arg['vmax'])
Marco Selig's avatar
Marco Selig committed
1177
1178

        else:
1179
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
1180
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
1181

1182
        return x
Marco Selig's avatar
Marco Selig committed
1183

1184
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
        """
            Weights a given array with the pixel volumes to a given power.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).

            Returns
            -------
            y : numpy.ndarray
                Weighted array.
        """
1200
        x = self.cast(x)