test_model_gradients.py 5.66 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest
20
from numpy.testing import assert_
Philipp Arras's avatar
Philipp Arras committed
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

import nifty5 as ift

from .common import list2fixture

pmp = pytest.mark.parametrize
space = list2fixture([
    ift.GLSpace(15),
    ift.RGSpace(64, distances=.789),
    ift.RGSpace([32, 32], distances=.789)
])
space1 = space
seed = list2fixture([4, 78, 23])


def _make_linearization(type, space, seed):
    np.random.seed(seed)
    S = ift.ScalingOperator(1., space)
    s = S.draw_sample()
    if type == "Constant":
        return ift.Linearization.make_const(s)
    elif type == "Variable":
        return ift.Linearization.make_var(s)
    raise ValueError('unknown type passed')


def testBasics(space, seed):
    var = _make_linearization("Variable", space, seed)
    model = ift.ScalingOperator(6., var.target)
    ift.extra.check_value_gradient_consistency(model, var.val)


@pmp('type1', ['Variable', 'Constant'])
@pmp('type2', ['Variable'])
def testBinary(type1, type2, space, seed):
    dom1 = ift.MultiDomain.make({'s1': space})
    dom2 = ift.MultiDomain.make({'s2': space})
58 59 60 61

    # FIXME Remove this?
    _make_linearization(type1, dom1, seed)
    _make_linearization(type2, dom2, seed)
Philipp Arras's avatar
Philipp Arras committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    dom = ift.MultiDomain.union((dom1, dom2))
    select_s1 = ift.ducktape(None, dom, "s1")
    select_s2 = ift.ducktape(None, dom, "s2")
    model = select_s1*select_s2
    pos = ift.from_random("normal", dom)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
    model = select_s1 + select_s2
    pos = ift.from_random("normal", dom)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
    model = select_s1.scale(3.)
    pos = ift.from_random("normal", dom1)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
    model = ift.ScalingOperator(2.456, space)(select_s1*select_s2)
    pos = ift.from_random("normal", dom)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
78
    model = ift.sigmoid(2.456*(select_s1*select_s2))
Philipp Arras's avatar
Philipp Arras committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    pos = ift.from_random("normal", dom)
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)
    pos = ift.from_random("normal", dom)
    model = ift.OuterProduct(pos['s1'], ift.makeDomain(space))
    ift.extra.check_value_gradient_consistency(model, pos['s2'], ntries=20)
    if isinstance(space, ift.RGSpace):
        model = ift.FFTOperator(space)(select_s1*select_s2)
        pos = ift.from_random("normal", dom)
        ift.extra.check_value_gradient_consistency(model, pos, ntries=20)


def testModelLibrary(space, seed):
    # Tests amplitude model and coorelated field model
    Npixdof, ceps_a, ceps_k, sm, sv, im, iv = 4, 0.5, 2., 3., 1.5, 1.75, 1.3
    np.random.seed(seed)
94
    domain = ift.PowerSpace(space.get_default_codomain())
95
    model = ift.SLAmplitude(domain, Npixdof, ceps_a, ceps_k, sm, sv, im, iv)
96
    assert_(isinstance(model, ift.Operator))
Philipp Arras's avatar
Philipp Arras committed
97 98 99 100 101 102 103 104 105
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
    ift.extra.check_value_gradient_consistency(model, pos, ntries=20)

    model2 = ift.CorrelatedField(space, model)
    S = ift.ScalingOperator(1., model2.domain)
    pos = S.draw_sample()
    ift.extra.check_value_gradient_consistency(model2, pos, ntries=20)

106 107 108 109 110 111
    domtup = ift.DomainTuple.make((space, space))
    model3 = ift.MfCorrelatedField(domtup, [model, model])
    S = ift.ScalingOperator(1., model3.domain)
    pos = S.draw_sample()
    ift.extra.check_value_gradient_consistency(model3, pos, ntries=20)

Philipp Arras's avatar
Philipp Arras committed
112 113 114 115 116 117

def testPointModel(space, seed):
    S = ift.ScalingOperator(1., space)
    pos = S.draw_sample()
    alpha = 1.5
    q = 0.73
Philipp Arras's avatar
Fixups  
Philipp Arras committed
118
    model = ift.InverseGammaOperator(space, alpha, q)
Philipp Arras's avatar
Philipp Arras committed
119 120
    # FIXME All those cdfs and ppfs are not very accurate
    ift.extra.check_value_gradient_consistency(model, pos, tol=1e-2, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
121

122 123 124 125 126 127

@pmp('domain', [
    ift.RGSpace(64, distances=.789),
    ift.RGSpace([32, 32], distances=.789),
    ift.RGSpace([32, 32, 8], distances=.789)
])
Martin Reinecke's avatar
Martin Reinecke committed
128 129 130 131
@pmp('causal', [True, False])
@pmp('minimum_phase', [True, False])
@pmp('seed', [4, 78, 23])
def testDynamicModel(domain, causal, minimum_phase, seed):
132 133
    model, _ = ift.dynamic_operator(
        domain, None, 1., 1., 'f', causal=causal, minimum_phase=minimum_phase)
Martin Reinecke's avatar
Martin Reinecke committed
134 135 136
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
    # FIXME I dont know why smaller tol fails for 3D example
137
    ift.extra.check_value_gradient_consistency(model, pos, tol=1e-5, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
138
    if len(domain.shape) > 1:
139 140 141 142 143 144 145 146 147 148 149 150 151
        dct = {
            'domain': domain,
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'lightcone_key': 'c',
            'sigc': 1.,
            'quant': 5,
            'causal': causal,
            'minimum_phase': minimum_phase
        }
        model, _ = ift.dynamic_lightcone_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
152 153 154
        S = ift.ScalingOperator(1., model.domain)
        pos = S.draw_sample()
        # FIXME I dont know why smaller tol fails for 3D example
155 156
        ift.extra.check_value_gradient_consistency(
            model, pos, tol=1e-5, ntries=20)