smooth_linear_amplitude.py 7 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

18
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Philipp Arras's avatar
Docs    
Philipp Arras committed
20
from ..domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domains.power_space import PowerSpace
22
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
23
24
25
26
27
from ..operators.exp_transform import ExpTransform
from ..operators.offset_operator import OffsetOperator
from ..operators.qht_operator import QHTOperator
from ..operators.slope_operator import SlopeOperator
from ..operators.symmetrizing_operator import SymmetrizingOperator
28
from ..sugar import makeOp
29
30
31


def _ceps_kernel(dof_space, k, a, k0):
32
33
34
35
    res = 1.
    for i in range(len(k0)):
        res += (k[i]/k0[i])**2
    return a**2/(res)**2
36
37


Philipp Arras's avatar
Docs    
Philipp Arras committed
38
39
def CepstrumOperator(target, a, k0):
    '''Turns a white Gaussian random field into a smooth field on a LogRGSpace.
40

Philipp Arras's avatar
Docs    
Philipp Arras committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    Composed out of three operators:

        sym @ qht @ diag(sqrt_ceps),

    where sym is a :class:`SymmetrizingOperator`, qht is a :class:`QHTOperator`
    and ceps is the so-called cepstrum:

    .. math::
        \\mathrm{sqrt\_ceps}(k) = \\frac{a}{1+(k/k0)^2}

    These operators are combined in this fashion in order to generate:

    - A field which is smooth, i.e. second derivatives are punished (note
      that the sqrt-cepstrum is essentially proportional to 1/k**2).

    - A field which is symmetric around the pixel in the middle of the space.
      This is result of the :class:`SymmetrizingOperator` and needed in order to
      decouple the degrees of freedom at the beginning and the end of the
      amplitude whenever :class:`CepstrumOperator` is used as in
      :class:`SLAmplitude`.

62
63
64
    The prior on the zero mode, or zero subspaces in the case of dim > 1,
    is the integral of the prior of all other modes along the corresponding
    axis.
Philipp Arras's avatar
Docs    
Philipp Arras committed
65
66
67
68

    Parameters
    ----------
    target : LogRGSpace
69
        Target domain of the operator, needs to be non-harmonic.
Philipp Arras's avatar
Docs    
Philipp Arras committed
70
    a : float
71
72
73
74
75
76
77
        Cutoff of smoothness prior (positive only). Controls the
        regularization of the inverse laplace operator to be finite at zero.
        Larger values for the cutoff results in a weaker constraining prior.
    k0 : float, list of float
        Strength of smothness prior in quefrency space (positive only) along
        each axis. If float then the strength is the same along each axis.
        Larger values result in a weaker constraining prior.
Philipp Arras's avatar
Docs    
Philipp Arras committed
78
    '''
79
    a = float(a)
Philipp Arras's avatar
Docs    
Philipp Arras committed
80
    target = DomainTuple.make(target)
81
    if a <= 0:
Philipp Arras's avatar
Docs    
Philipp Arras committed
82
        raise ValueError
83
    if len(target) > 1 or target[0].harmonic:
Philipp Arras's avatar
Docs    
Philipp Arras committed
84
        raise TypeError
85
86
87
88
89
90
    if isinstance(k0, float):
        k0 = (k0, )*len(target.shape)
    elif len(k0) != len(target.shape):
        raise ValueError
    if np.any(np.array(k0) <= 0):
        raise ValueError
Philipp Arras's avatar
Docs    
Philipp Arras committed
91
92
93
94
95
96
97
98
99

    qht = QHTOperator(target)
    dom = qht.domain[0]
    sym = SymmetrizingOperator(target)

    # Compute cepstrum field
    dim = len(dom.shape)
    shape = dom.shape
    q_array = dom.get_k_array()
100
    # Fill all non-zero modes
Philipp Arras's avatar
Philipp Arras committed
101
102
    no_zero_modes = (slice(1, None),)*dim
    ks = q_array[(slice(None),) + no_zero_modes]
103
    cepstrum_field = np.zeros(shape)
Philipp Arras's avatar
Docs    
Philipp Arras committed
104
    cepstrum_field[no_zero_modes] = _ceps_kernel(dom, ks, a, k0)
105
    # Fill zero-mode subspaces
106
    for i in range(dim):
Philipp Arras's avatar
Philipp Arras committed
107
108
109
        fst_dims = (slice(None),)*i
        sl = fst_dims + (slice(1, None),)
        sl2 = fst_dims + (0,)
110
        cepstrum_field[sl2] = np.sum(cepstrum_field[sl], axis=i)
Philipp Arras's avatar
Docs    
Philipp Arras committed
111
    cepstrum = Field.from_global_data(dom, cepstrum_field)
Philipp Arras's avatar
Philipp Arras committed
112

113
114
115
    return sym @ qht @ makeOp(cepstrum.sqrt())


116
117
118
def SLAmplitude(target, n_pix, a, k0, sm, sv, im, iv, keys=['tau', 'phi']):
    '''Operator for parametrizing smooth amplitudes (square roots of power
    spectra).
119
120
121

    The general guideline for setting up generative models in IFT is to
    transform the problem into the eigenbase of the prior and formulate the
122
123
    generative model in this base. This is done here for the case of an
    amplitude which is smooth and has a linear component (both on
124
125
126
    double-logarithmic scale).

    This function assembles an :class:`Operator` which maps two a-priori white
127
    Gaussian random fields to a smooth amplitude which is composed out of
128
129
130
131
132
133
    a linear and a smooth component.

    On double-logarithmic scale, i.e. both x and y-axis on logarithmic scale,
    the output of the generated operator is:

        AmplitudeOperator = 0.5*(smooth_component + linear_component)
Philipp Arras's avatar
Philipp Arras committed
134

135
    This is then exponentiated and exponentially binned (in this order).
136
137
138
139
140
141
142

    The prior on the linear component is parametrized by four real numbers,
    being expected value and prior variance on the slope and the y-intercept
    of the linear function.

    The prior on the smooth component is parametrized by two real numbers: the
    strength and the cutoff of the smoothness prior (see :class:`CepstrumOperator`).
Martin Reinecke's avatar
Martin Reinecke committed
143
144
145

    Parameters
    ----------
146
147
148
149
150
151
152
153
    n_pix : int
        Number of pixels of the space in which the .
    target : PowerSpace
        Target of the Operator.
    a : float
        Strength of smoothness prior (see :class:`CepstrumOperator`).
    k0 : float
        Cutoff of smothness prior in quefrency space (see :class:`CepstrumOperator`).
Philipp Arras's avatar
Philipp Arras committed
154
    sm : float
155
        Expected exponent of power law. FIXME
Philipp Arras's avatar
Philipp Arras committed
156
    sv : float
157
        Prior standard deviation of exponent of power law.
Philipp Arras's avatar
Philipp Arras committed
158
    im : float
159
        Expected y-intercept of power law. FIXME
Philipp Arras's avatar
Philipp Arras committed
160
    iv : float
161
        Prior standard deviation of y-intercept of power law.
162
163
164
165
166
167
168

    Returns
    -------
    Operator
        Operator which is defined on the space of white excitations fields and
        which returns on its target a power spectrum which consists out of a
        smooth and a linear part.
Martin Reinecke's avatar
Martin Reinecke committed
169
    '''
170
171
172
173
174
    if not (isinstance(n_pix, int) and isinstance(target, PowerSpace)):
        raise TypeError

    a, k0 = float(a), float(k0)
    sm, sv, im, iv = float(sm), float(sv), float(im), float(iv)
175
176
    if sv <= 0 or iv <= 0:
        raise ValueError
177
178
179
180

    et = ExpTransform(target, n_pix)
    dom = et.domain[0]

181
    # Smooth component
182
183
    dct = {'a': a, 'k0': k0}
    smooth = CepstrumOperator(dom, **dct).ducktape(keys[0])
Martin Reinecke's avatar
Martin Reinecke committed
184

185
    # Linear component
186
187
188
189
190
191
    sl = SlopeOperator(dom)
    mean = np.array([sm, im + sm*dom.t_0[0]])
    sig = np.array([sv, iv])
    mean = Field.from_global_data(sl.domain, mean)
    sig = Field.from_global_data(sl.domain, sig)
    linear = (sl @ OffsetOperator(mean) @ makeOp(sig)).ducktape(keys[1])
192
193
194

    # Combine linear and smooth component
    loglog_ampl = 0.5*(smooth + linear)
Philipp Arras's avatar
Changes    
Philipp Arras committed
195

196
    # Go from loglog-space to linear-linear-space
Philipp Arras's avatar
Philipp Arras committed
197
    return et @ loglog_ampl.exp()