rg_space.py 6.97 KB
Newer Older
1 2 3 4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6 7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8 9 10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15 16 17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18 19

from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20
from builtins import range
Martin Reinecke's avatar
Martin Reinecke committed
21
from functools import reduce
Marco Selig's avatar
Marco Selig committed
22
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
23
from .structured_domain import StructuredDomain
24
from ..field import Field
Martin Reinecke's avatar
Martin Reinecke committed
25
from .. import dobj
csongor's avatar
csongor committed
26

Marco Selig's avatar
Marco Selig committed
27

Martin Reinecke's avatar
Martin Reinecke committed
28 29
class RGSpace(StructuredDomain):
    """NIFTy subclass for regular Cartesian grids.
Martin Reinecke's avatar
Martin Reinecke committed
30 31 32

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
33
    shape : int or tuple of int
Martin Reinecke's avatar
Martin Reinecke committed
34
        Number of grid points or numbers of gridpoints along each axis.
Martin Reinecke's avatar
Martin Reinecke committed
35
    distances : None or float or tuple of float, optional
Martin Reinecke's avatar
Martin Reinecke committed
36 37
        Distance between two grid points along each axis
        (default: None).
Martin Reinecke's avatar
Martin Reinecke committed
38 39 40 41 42 43 44 45

        If distances is None:

          - if harmonic==True, all distances will be set to 1

          - if harmonic==False, the distance along each axis will be
            set to the inverse of the number of points along that axis.

Martin Reinecke's avatar
Martin Reinecke committed
46
    harmonic : bool, optional
47
        Whether the space represents a grid in position or harmonic space.
Martin Reinecke's avatar
Martin Reinecke committed
48
        (default: False).
Marco Selig's avatar
Marco Selig committed
49
    """
Martin Reinecke's avatar
Martin Reinecke committed
50
    _needed_for_hash = ["_distances", "_shape", "_harmonic"]
51

Martin Reinecke's avatar
Martin Reinecke committed
52
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
53
        super(RGSpace, self).__init__()
54

Martin Reinecke's avatar
Martin Reinecke committed
55
        self._harmonic = bool(harmonic)
Martin Reinecke's avatar
Martin Reinecke committed
56 57 58
        if np.isscalar(shape):
            shape = (shape,)
        self._shape = tuple(int(i) for i in shape)
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
59 60 61 62 63 64 65 66 67 68 69 70 71

        if distances is None:
            if self.harmonic:
                self._distances = (1.,) * len(self._shape)
            else:
                self._distances = tuple(1./s for s in self._shape)
        elif np.isscalar(distances):
            self._distances = (float(distances),) * len(self._shape)
        else:
            temp = np.empty(len(self.shape), dtype=np.float64)
            temp[:] = distances
            self._distances = tuple(temp)

72
        self._dvol = float(reduce(lambda x, y: x*y, self._distances))
Martin Reinecke's avatar
Martin Reinecke committed
73
        self._size = int(reduce(lambda x, y: x*y, self._shape))
Marco Selig's avatar
Marco Selig committed
74

75
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
76 77
        return ("RGSpace(shape=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.distances, self.harmonic))
78

79 80 81 82 83 84 85 86 87
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
Martin Reinecke's avatar
Martin Reinecke committed
88 89
    def size(self):
        return self._size
90

Martin Reinecke's avatar
Martin Reinecke committed
91
    @property
92 93
    def scalar_dvol(self):
        return self._dvol
94

95
    def get_k_length_array(self):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
96 97
        if (not self.harmonic):
            raise NotImplementedError
98 99
        ibegin = dobj.ibegin_from_shape(self._shape)
        res = np.arange(self.local_shape[0], dtype=np.float64) + ibegin[0]
Martin Reinecke's avatar
Martin Reinecke committed
100 101
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
102
            return Field.from_local_data(self, res)
Martin Reinecke's avatar
Martin Reinecke committed
103 104
        res *= res
        for i in range(1, len(self.shape)):
105
            tmp = np.arange(self.local_shape[i], dtype=np.float64) + ibegin[i]
Martin Reinecke's avatar
Martin Reinecke committed
106 107 108
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
109
        return Field.from_local_data(self, np.sqrt(res))
110

111
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
112 113
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
131
            # FIXME: this needs to improve for MPI. Maybe unique()/gather()?
Martin Reinecke's avatar
Martin Reinecke committed
132
            tmp = self.get_k_length_array().to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
133
            tmp = np.unique(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
134 135 136 137 138 139 140
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

Martin Reinecke's avatar
Martin Reinecke committed
141 142
    @staticmethod
    def _kernel(x, sigma):
143
        from ..sugar import exp
144
        return exp(x*x * (-2.*np.pi*np.pi*sigma*sigma))
Martin Reinecke's avatar
Martin Reinecke committed
145

146
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
147 148
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
149
        return lambda x: self._kernel(x, sigma)
150

Martin Reinecke's avatar
Martin Reinecke committed
151
    def get_default_codomain(self):
Martin Reinecke's avatar
Martin Reinecke committed
152 153 154 155 156 157 158 159
        """Returns a :class:`RGSpace` object representing the (position or
        harmonic) partner domain of `self`, depending on `self.harmonic`.

        Returns
        -------
        RGSpace
            The parter domain
        """
Martin Reinecke's avatar
Martin Reinecke committed
160 161 162 163
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
Martin Reinecke's avatar
Martin Reinecke committed
164 165 166
        """Raises `TypeError` if `codomain` is not a matching partner domain
        for `self`.
        """
Martin Reinecke's avatar
Martin Reinecke committed
167 168 169 170 171 172 173 174 175 176 177 178
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
179 180 181
        if not np.all(abs(np.array(self.shape) *
                          np.array(self.distances) *
                          np.array(codomain.distances)-1) < 1e-7):
Martin Reinecke's avatar
Martin Reinecke committed
182 183 184
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

185 186
    @property
    def distances(self):
Martin Reinecke's avatar
Martin Reinecke committed
187 188 189
        """tuple of float : Distance between grid points along each axis.
        The n-th entry of the tuple is the distance between neighboring
        grid points along the n-th dimension.
190
        """
191
        return self._distances