field.py 47.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
20
21

import itertools
csongor's avatar
csongor committed
22
23
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
24
25
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
26

27
from d2o import distributed_data_object,\
28
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
29

30
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
31

32
from nifty.domain_object import DomainObject
33

34
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
35

csongor's avatar
csongor committed
36
import nifty.nifty_utilities as utilities
37
38
from nifty.random import Random

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41
42
43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45
46
    In addition Field has methods to work with power-spectra.

47
48
49
50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

54
55
56
57
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59
60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62
63
64
65
66
67
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
68

69
70
71
72
73
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
74

75
76
77
78
79
80
81
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
82
83
        Name of the used distribution_strategy.

84
85
86
87
88
89
90
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
91

92
93
94
95
96
97
98
99
100
101
102
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
103

104
105
106
107
108
    See Also
    --------
    distributed_data_object

    """
109

Theo Steininger's avatar
Theo Steininger committed
110
    # ---Initialization methods---
111

112
    def __init__(self, domain=None, val=None, dtype=None,
113
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
114

115
        self.domain = self._parse_domain(domain=domain, val=val)
116
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
117

Theo Steininger's avatar
Theo Steininger committed
118
        self.dtype = self._infer_dtype(dtype=dtype,
119
                                       val=val)
120

121
122
123
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
124

125
126
127
128
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
129

130
    def _parse_domain(self, domain, val=None):
131
        if domain is None:
132
133
134
135
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
136
        elif isinstance(domain, DomainObject):
137
            domain = (domain,)
138
139
140
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
141
        for d in domain:
142
            if not isinstance(d, DomainObject):
143
144
                raise TypeError(
                    "Given domain contains something that is not a "
145
                    "DomainObject instance.")
csongor's avatar
csongor committed
146
147
        return domain

Theo Steininger's avatar
Theo Steininger committed
148
149
150
151
152
153
154
155
156
157
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
158

159
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
160
        if dtype is None:
161
            try:
162
                dtype = val.dtype
163
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
164
165
166
                try:
                    if val is None:
                        raise TypeError
167
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
168
                except(TypeError):
169
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
170
        else:
171
            dtype = np.dtype(dtype)
172

Theo Steininger's avatar
Theo Steininger committed
173
        return dtype
174

175
176
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
177
            if isinstance(val, distributed_data_object):
178
                distribution_strategy = val.distribution_strategy
179
            elif isinstance(val, Field):
180
                distribution_strategy = val.distribution_strategy
181
            else:
182
                self.logger.debug("distribution_strategy set to default!")
183
                distribution_strategy = gc['default_distribution_strategy']
184
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
185
186
187
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
188
        return distribution_strategy
189
190

    # ---Factory methods---
191

192
    @classmethod
193
    def from_random(cls, random_type, domain=None, dtype=None,
194
                    distribution_strategy=None, **kwargs):
195
196
197
198
199
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
200

201
202
203
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
204

205
206
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
207

208
209
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
210

211
212
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
213

214
215
216
217
218
219
220
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
221
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
222

223
224

        """
Theo Steininger's avatar
Theo Steininger committed
225

226
        # create a initially empty field
227
        f = cls(domain=domain, dtype=dtype,
228
                distribution_strategy=distribution_strategy)
229
230
231
232
233
234
235

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
236
        # extract the distributed_data_object from f and apply the appropriate
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
263
        else:
264
265
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
266

267
        return random_arguments
csongor's avatar
csongor committed
268

269
270
    # ---Powerspectral methods---

Theo Steininger's avatar
Theo Steininger committed
271
    def power_analyze(self, spaces=None, logarithmic=False, nbin=None,
272
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
273
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
274

Theo Steininger's avatar
Theo Steininger committed
275
276
277
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
278
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
279
        field, corresponding to the square root of the power spectrum.
280
281
282

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
283
284
285
286
287
288
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
            if spaces==None : Tries to synthesize for the whole domain
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
289
            {default : False}
Theo Steininger's avatar
Theo Steininger committed
290
291
292
293
294
295
296
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
            if binbounds==None : bins are inferred. Overwrites nbins and log
297
298
299
300
301
302
303
304
305
306
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
307

308
309
310
311
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
312
313
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
314
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
315

316
317
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
318
        out : Field
319
320
321
322
323
324
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
325

326
        """
Theo Steininger's avatar
Theo Steininger committed
327

Theo Steininger's avatar
Theo Steininger committed
328
        # check if all spaces in `self.domain` are either harmonic or
329
330
331
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
332
                self.logger.info(
333
                    "Field has a space in `domain` which is neither "
334
335
336
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
337
338
339
340
341
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
342
343
344
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
345
346

        if len(spaces) == 0:
347
348
            raise ValueError(
                "No space for analysis specified.")
349
        elif len(spaces) > 1:
350
351
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
352
353
354
355

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
356
357
            raise ValueError(
                "The analyzed space must be harmonic.")
358

359
360
361
362
363
364
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

365
366
367
368
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

369
        harmonic_domain = self.domain[space_index]
370
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
371
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
372
373
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
374

375
        # extract pindex and rho from power_domain
376
377
        pindex = power_domain.pindex
        rho = power_domain.rho
378

379
        if keep_phase_information:
380
            hermitian_part, anti_hermitian_part = \
381
                harmonic_domain.hermitian_decomposition(
382
383
384
385
386
387
388
389
390
391
392
393
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
394

395
396
        else:
            power_spectrum = self._calculate_power_spectrum(
397
398
399
400
401
402
403
404
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain
405
        result_dtype = power_spectrum.dtype
406

407
408
        result_field = self.copy_empty(
                   domain=result_domain,
409
                   dtype=result_dtype,
410
                   distribution_strategy=power_spectrum.distribution_strategy)
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
439
            raise ValueError("pindex's distribution strategy must be "
440
441
442
443
444
445
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
446
                    "A slicing distributor shall not be reshaped to "
447
448
449
450
451
452
453
454
455
456
457
458
459
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

460
461
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
462
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
463

Theo Steininger's avatar
Theo Steininger committed
464
465
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
466

467
468
469
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
470
471
472
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
473
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
474
475
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
476
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
477
478
479
480
481
482
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
483
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
484
485
486
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
487

488
489
490
491
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
492
            stored in the `spaces` in `self`.
493

Theo Steininger's avatar
Theo Steininger committed
494
495
496
497
498
499
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

500
501
502
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
503
504
505
506
507

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

508
        """
Theo Steininger's avatar
Theo Steininger committed
509

510
511
512
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
513
514
515
        if spaces is None:
            spaces = range(len(self.domain))

516
517
518
519
520
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
521
522
523

        # create the result domain
        result_domain = list(self.domain)
524
525
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
526
            harmonic_domain = power_space.harmonic_partner
527
            result_domain[power_space_index] = harmonic_domain
528
529
530

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
531
        if real_power:
532
            result_list = [None]
533
534
        else:
            result_list = [None, None]
535

536
537
        result_list = [self.__class__.from_random(
                             'normal',
538
539
540
                             mean=mean,
                             std=std,
                             domain=result_domain,
541
                             dtype=np.complex,
542
                             distribution_strategy=self.distribution_strategy)
543
544
545
546
547
548
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

        spec = self.val.get_full_data()
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

567
        if real_signal:
568
569
570
571
572
573
            result_val_list = [self._hermitian_decomposition(
                                                result_domain,
                                                result_val,
                                                spaces,
                                                result_list[0].domain_axes)[0]
                               for result_val in result_val_list]
574
575
576
577
578
579
580

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
581
        else:
582
583
584
585
            result = result_list[0] + 1j*result_list[1]

        return result

586
587
588
589
    @staticmethod
    def _hermitian_decomposition(domain, val, spaces, domain_axes):
        # hermitianize for the first space
        (h, a) = domain[spaces[0]].hermitian_decomposition(
590
591
592
                                               val,
                                               domain_axes[spaces[0]],
                                               preserve_gaussian_variance=True)
593
594
        # hermitianize all remaining spaces using the iterative formula
        for space in xrange(1, len(spaces)):
595
596
597
            (hh, ha) = domain[space].hermitian_decomposition(
                                              h,
                                              domain_axes[space],
598
                                              preserve_gaussian_variance=False)
599
600
601
            (ah, aa) = domain[space].hermitian_decomposition(
                                              a,
                                              domain_axes[space],
602
                                              preserve_gaussian_variance=False)
603
            c = (hh - ha - ah + aa).conjugate()
604
605
606
            full = (hh + ha + ah + aa)
            h = (full + c)/2.
            a = (full - c)/2.
607
608

        # correct variance
609

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
        # in principle one must not correct the variance for the fixed
        # points of the hermitianization. However, for a complex field
        # the input field loses half of its power at its fixed points
        # in the `hermitian` part. Hence, here a factor of sqrt(2) is
        # also necessary!
        # => The hermitianization can be done on a space level since either
        # nothing must be done (LMSpace) or ALL points need a factor of sqrt(2)
        # => use the preserve_gaussian_variance flag in the
        # hermitian_decomposition method above.

        # This code is for educational purposes:
#        fixed_points = [domain[i].hermitian_fixed_points() for i in spaces]
#        # check if there was at least one flipping during hermitianization
#        flipped_Q = np.any([fp is not None for fp in fixed_points])
#        # if the array got flipped, correct the variance
#        if flipped_Q:
#            h *= np.sqrt(2)
#            a *= np.sqrt(2)
#
629
630
631
632
633
634
635
636
637
638
639
640
641
#            fixed_points = [[fp] if fp is None else fp for fp in fixed_points]
#            for product_point in itertools.product(*fixed_points):
#                slice_object = np.array((slice(None), )*len(val.shape),
#                                        dtype=np.object)
#                for i, sp in enumerate(spaces):
#                    point_component = product_point[i]
#                    if point_component is None:
#                        point_component = slice(None)
#                    slice_object[list(domain_axes[sp])] = point_component
#
#                slice_object = tuple(slice_object)
#                h[slice_object] /= np.sqrt(2)
#                a[slice_object] /= np.sqrt(2)
642
643
644

        return (h, a)

645
646
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
647
648
649

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
650
        pindex = power_space.pindex
651
652
653
654
655
656
657
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
658
            self.logger.warn(
659
                "The distribution_stragey of pindex does not fit the "
660
661
662
663
664
665
666
667
668
669
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
670
671
        local_rescaler = spec[local_blow_up]
        return local_rescaler
672

Theo Steininger's avatar
Theo Steininger committed
673
    # ---Properties---
674

Theo Steininger's avatar
Theo Steininger committed
675
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
676
        """ Sets the fields distributed_data_object.
677
678
679

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
680
        new_val : scalar, array-like, Field, None *optional*
681
682
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
683

684
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
685
686
            If False, Field tries to not copy the input data but use it
            directly.
687
688
689
690
691
692
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
693

694
695
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
696
697
            new_val = new_val.copy()
        self._val = new_val
698
        return self
csongor's avatar
csongor committed
699

700
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
701
        """ Returns the distributed_data_object associated with this Field.
702
703
704
705

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
706
707
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
708

709
710
711
712
713
714
715
716
717
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
718

719
720
721
        if self._val is None:
            self.set_val(None)

722
        if copy:
Theo Steininger's avatar
Theo Steininger committed
723
            return self._val.copy()
724
        else:
Theo Steininger's avatar
Theo Steininger committed
725
            return self._val
csongor's avatar
csongor committed
726

Theo Steininger's avatar
Theo Steininger committed
727
728
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
729
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
730

731
732
733
734
735
736
737
738
739
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
740

741
        return self.get_val(copy=False)
csongor's avatar
csongor committed
742

Theo Steininger's avatar
Theo Steininger committed
743
744
    @val.setter
    def val(self, new_val):
745
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
746

747
748
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
749
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
750

751
752
753
754
755
756
757
758
759
760
761
        Returns
        -------
        out : tuple
            The output object. The tuple contains the dimansions of the spaces
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
762

763
        shape_tuple = tuple(sp.shape for sp in self.domain)
764
765
766
767
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
768

769
        return global_shape
csongor's avatar
csongor committed
770

771
772
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
773
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
774

Theo Steininger's avatar
Theo Steininger committed
775
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
776

777
778
779
780
781
782
783
784
785
786
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
787

788
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
789
790
791
792
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
793

794
795
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
796
797
798
799
800
801
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
802
803
804
805
806
807
808
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
809
810
811
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
812
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
813
        try:
Theo Steininger's avatar
Theo Steininger committed
814
            return reduce(lambda x, y: x * y, volume_tuple)
815
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
816
            return 0.
817

Theo Steininger's avatar
Theo Steininger committed
818
    # ---Special unary/binary operations---
819

csongor's avatar
csongor committed
820
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
821
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
822

823
824
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
825
        x : scalar, d2o, Field, array_like
826
827
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
828

829
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
830
831
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
832

833
834
835
836
837
838
839
840
841
842
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
843
844
        if dtype is None:
            dtype = self.dtype
845
846
        else:
            dtype = np.dtype(dtype)
847

848
849
        casted_x = x

850
        for ind, sp in enumerate(self.domain):
851
            casted_x = sp.pre_cast(casted_x,
852
853
854
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
855
856

        for ind, sp in enumerate(self.domain):
857
858
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
859

860
        return casted_x
csongor's avatar
csongor committed
861

Theo Steininger's avatar
Theo Steininger committed
862
    def _actual_cast(self, x, dtype=None):
863
        if isinstance(x, Field):
csongor's avatar
csongor committed
864
865
866
867
868
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

869
        return_x = distributed_data_object(
870
871
872
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
873
874
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
875

876
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
877
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
878

879
880
881
882
883
884
885
886
887
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
888

889
890
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
891

892
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
893
894
            The new distribution strategy the Field shall have.

895
896
897
898
899
900
901
902
903
904
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
905

Theo Steininger's avatar
Theo Steininger committed
906
        copied_val = self.get_val(copy=True)
907
908
909
910
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
911
912
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
913

914
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
915
916
917
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
918
919
920
921
922
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
923

924
925
926
927
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
928

929
930
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
931

Theo Steininger's avatar
Theo Steininger committed
932
        distribution_strategy : string, all supported distribution strategies
933
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
934

935
936
937
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
938
            The output object.
939
940
941
942
943
944

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
945

Theo Steininger's avatar
Theo Steininger committed
946
947
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
948
        else:
Theo Steininger's avatar
Theo Steininger committed
949
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
950

Theo Steininger's avatar
Theo Steininger committed
951
952
953
954
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
955

956
957
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
958

Theo Steininger's avatar
Theo Steininger committed
959
960
961
962
963
964
965
966
967
968
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
969
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
970
971
972
973
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
974
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
975
        return new_field
csongor's avatar
csongor committed
976

Theo Steininger's avatar
Theo Steininger committed
977
978
979
980
981
982
983
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
984
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
985
986
987
988
989
990
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
991
        """ Weights the pixels of `self` with their invidual pixel-volume.
992
993
994
995

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
996
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
997

998
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
999
1000
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
1001

Theo Steininger's avatar
Theo Steininger committed
1002
1003
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
1004

1005
1006
1007
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
1008
            The weighted field.
1009
1010

        """
1011
        if inplace:
csongor's avatar
csongor committed
1012
1013
1014
1015
            new_field = self
        else:
            new_field = self.copy_empty()

1016
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
1017

1018
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
1019
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
1020
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
1021

1022
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
1023
1024
1025
1026
1027
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
1028
1029

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
1030
1031
        return new_field

1032
    def dot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar
Theo Steininger committed
1033
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
1034

1035
1036
1037
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
1038
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
1039

Theo Steininger's avatar
Theo Steininger committed
1040
1041
1042
        spaces : tuple of ints
            If the domain of `self` and `x` are not the same, `spaces` specfies
            the mapping.
Theo Steininger's avatar
Theo Steininger committed
1043

1044
        bare : boolean
Theo Steininger's avatar
Theo Steininger committed
1045
            If true, no volume factors will be included in the computation.
Theo Steininger's avatar
Theo Steininger committed
1046

1047
1048
1049
        Returns
        -------
        out : float, complex
Theo Steininger's avatar
Theo Steininger committed
1050

1051
        """
1052
1053
1054
        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
1055

Martin Reinecke's avatar
Martin Reinecke committed
1056
        # Compute the dot respecting the fact of discrete/continuous spaces
Theo Steininger's avatar
Theo Steininger committed
1057
1058
1059
1060
1061
        if bare:
            y = self
        else:
            y = self.weight(power=1)

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
1077

Theo Steininger's avatar
Theo Steininger committed
1078
    def norm(self):
1079
        """ Computes the Lq-norm of the field values.
csongor's avatar
csongor committed
1080

Theo Steininger's avatar
Theo Steininger committed
1081
1082
1083
1084
        Parameters
        ----------
        q : scalar
            Parameter q of the Lq-norm (default: 2).
csongor's avatar
csongor committed
1085