structured_domain.py 3.92 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18

19
import abc
Martin Reinecke's avatar
Martin Reinecke committed
20
21
from .domain import Domain
import numpy as np
Theo Steininger's avatar
Theo Steininger committed
22

23

Martin Reinecke's avatar
Martin Reinecke committed
24
25
class StructuredDomain(Domain):
    """The abstract base class for all structured NIFTy domains.
26

Martin Reinecke's avatar
Martin Reinecke committed
27
    An instance of a space contains information about the manifold's
Martin Reinecke's avatar
Martin Reinecke committed
28
    geometry and enhances the functionality of Domain by methods that
Martin Reinecke's avatar
Martin Reinecke committed
29
    are needed for power spectrum analysis and smoothing.
30
    """
31

32
    def __init__(self):
Martin Reinecke's avatar
Martin Reinecke committed
33
34
        super(StructuredDomain, self).__init__()

Martin Reinecke's avatar
Martin Reinecke committed
35
    @abc.abstractproperty
Martin Reinecke's avatar
Martin Reinecke committed
36
    def scalar_dvol(self):
Martin Reinecke's avatar
Martin Reinecke committed
37
38
39
        """float or None : uniform cell volume, if applicable

        Returns the volume factors of this domain as a floating
Martin Reinecke's avatar
Martin Reinecke committed
40
41
42
43
44
        point scalar, if the volume factors are all identical, otherwise
        returns None.
        """
        raise NotImplementedError

Martin Reinecke's avatar
Martin Reinecke committed
45
    @property
Martin Reinecke's avatar
Martin Reinecke committed
46
    def dvol(self):
Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
        """float or numpy.ndarray(dtype=float): Volume factors

        Returns the volume factors of this domain, either as a floating
Martin Reinecke's avatar
Martin Reinecke committed
50
51
52
        point scalar (if the volume factors are all identical) or as a
        floating point array with a shape of `self.shape`.
        """
Martin Reinecke's avatar
Martin Reinecke committed
53
        return self.scalar_dvol
Martin Reinecke's avatar
Martin Reinecke committed
54

Martin Reinecke's avatar
Martin Reinecke committed
55
    @property
Martin Reinecke's avatar
Martin Reinecke committed
56
    def total_volume(self):
Martin Reinecke's avatar
Martin Reinecke committed
57
        """float : Total domain volume
Martin Reinecke's avatar
Martin Reinecke committed
58

Martin Reinecke's avatar
Martin Reinecke committed
59
        Returns the sum over all the domain's pixel volumes.
Martin Reinecke's avatar
Martin Reinecke committed
60
        """
Martin Reinecke's avatar
Martin Reinecke committed
61
        tmp = self.dvol
Martin Reinecke's avatar
Martin Reinecke committed
62
        return self.size * tmp if np.isscalar(tmp) else np.sum(tmp)
63

64
65
    @abc.abstractproperty
    def harmonic(self):
Martin Reinecke's avatar
Martin Reinecke committed
66
        """bool : True iff this domain is a harmonic domain."""
67
        raise NotImplementedError
68

69
    def get_k_length_array(self):
Martin Reinecke's avatar
Martin Reinecke committed
70
71
72
        """k vector lengths, if applicable,

        Returns the length of the k vector for every pixel.
Martin Reinecke's avatar
Martin Reinecke committed
73
        This method is only implemented for harmonic domains.
Theo Steininger's avatar
Theo Steininger committed
74

75
76
        Returns
        -------
77
        Field
78
            An array containing the k vector lengths
79
        """
Martin Reinecke's avatar
Martin Reinecke committed
80
        raise NotImplementedError
81

82
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
Martin Reinecke committed
83
84
85
        """Sorted unique k-vector lengths, if applicable.

        Returns an array of floats containing the unique k vector lengths
Martin Reinecke's avatar
Martin Reinecke committed
86
87
        for this domain.
        This method is only implemented for harmonic domains.
Martin Reinecke's avatar
Martin Reinecke committed
88
        """
Martin Reinecke's avatar
Martin Reinecke committed
89
90
        raise NotImplementedError

91
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
Martin Reinecke committed
92
        """Helper for Gaussian smoothing.
Theo Steininger's avatar
Theo Steininger committed
93

Martin Reinecke's avatar
Martin Reinecke committed
94
95
96
97
98
99
        This method, which is only implemented for harmonic domains, helps
        smoothing fields that live on a domain that has this domain as
        its harmonic partner. The returned function multiplies field values of
        a field with a zero centered Gaussian which corresponds to a
        convolution with a Gaussian kernel and sigma standard deviation in
        position space.
Theo Steininger's avatar
Theo Steininger committed
100

101
102
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
103
104
        sigma : float
            A real number representing a physical scale on which the smoothing
Martin Reinecke's avatar
Martin Reinecke committed
105
            takes place. Mathematically sigma is the standard
Theo Steininger's avatar
Theo Steininger committed
106
107
108
            deviation of a convolution with a normalized, zero-centered
            Gaussian that takes place in position space.

109
110
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
111
112
113
        function (array-like -> array-like)
            A smoothing operation that multiplies values with a Gaussian
            kernel.
114
        """
Martin Reinecke's avatar
Martin Reinecke committed
115
        raise NotImplementedError