field.py 47.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
20
21

import itertools
csongor's avatar
csongor committed
22
23
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
24
25
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
26

27
from d2o import distributed_data_object,\
28
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
29

30
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
31

32
from nifty.domain_object import DomainObject
33

34
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
35

csongor's avatar
csongor committed
36
import nifty.nifty_utilities as utilities
37
38
from nifty.random import Random

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41
42
43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45
46
    In addition Field has methods to work with power-spectra.

47
48
49
50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

54
55
56
57
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59
60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62
63
64
65
66
67
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
68

69
70
71
72
73
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
74

75
76
77
78
79
80
81
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
82
83
        Name of the used distribution_strategy.

84
85
86
87
88
89
90
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
91

92
93
94
95
96
97
98
99
100
101
102
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
103

104
105
106
107
108
    See Also
    --------
    distributed_data_object

    """
109

Theo Steininger's avatar
Theo Steininger committed
110
    # ---Initialization methods---
111

112
    def __init__(self, domain=None, val=None, dtype=None,
113
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
114

115
        self.domain = self._parse_domain(domain=domain, val=val)
116
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
117

Theo Steininger's avatar
Theo Steininger committed
118
        self.dtype = self._infer_dtype(dtype=dtype,
119
                                       val=val)
120

121
122
123
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
124

125
126
127
128
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
129

130
    def _parse_domain(self, domain, val=None):
131
        if domain is None:
132
133
134
135
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
136
        elif isinstance(domain, DomainObject):
137
            domain = (domain,)
138
139
140
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
141
        for d in domain:
142
            if not isinstance(d, DomainObject):
143
144
                raise TypeError(
                    "Given domain contains something that is not a "
145
                    "DomainObject instance.")
csongor's avatar
csongor committed
146
147
        return domain

Theo Steininger's avatar
Theo Steininger committed
148
149
150
151
152
153
154
155
156
157
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
158

159
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
160
        if dtype is None:
161
            try:
162
                dtype = val.dtype
163
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
164
165
166
                try:
                    if val is None:
                        raise TypeError
167
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
168
                except(TypeError):
169
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
170
        else:
171
            dtype = np.dtype(dtype)
172

Theo Steininger's avatar
Theo Steininger committed
173
        return dtype
174

175
176
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
177
            if isinstance(val, distributed_data_object):
178
                distribution_strategy = val.distribution_strategy
179
            elif isinstance(val, Field):
180
                distribution_strategy = val.distribution_strategy
181
            else:
182
                self.logger.debug("distribution_strategy set to default!")
183
                distribution_strategy = gc['default_distribution_strategy']
184
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
185
186
187
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
188
        return distribution_strategy
189
190

    # ---Factory methods---
191

192
    @classmethod
193
    def from_random(cls, random_type, domain=None, dtype=None,
194
                    distribution_strategy=None, **kwargs):
195
196
197
198
199
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
200

201
202
203
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
204

205
206
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
207

208
209
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
210

211
212
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
213

214
215
216
217
218
219
220
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
221
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
222

223
224

        """
Theo Steininger's avatar
Theo Steininger committed
225

226
        # create a initially empty field
227
        f = cls(domain=domain, dtype=dtype,
228
                distribution_strategy=distribution_strategy)
229
230
231
232
233
234
235

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
236
        # extract the distributed_data_object from f and apply the appropriate
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
263
        else:
264
265
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
266

267
        return random_arguments
csongor's avatar
csongor committed
268

269
270
    # ---Powerspectral methods---

Theo Steininger's avatar
Theo Steininger committed
271
    def power_analyze(self, spaces=None, logarithmic=False, nbin=None,
272
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
273
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
274

Theo Steininger's avatar
Theo Steininger committed
275
276
277
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
278
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
279
        field, corresponding to the square root of the power spectrum.
280
281
282

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
283
284
285
286
287
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
288
            {default : False}
Theo Steininger's avatar
Theo Steininger committed
289
290
291
292
293
294
295
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
            if binbounds==None : bins are inferred. Overwrites nbins and log
296
297
298
299
300
301
302
303
304
305
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
306

307
308
309
310
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
311
312
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
313
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
314

315
316
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
317
        out : Field
318
319
320
321
322
323
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
324

325
        """
Theo Steininger's avatar
Theo Steininger committed
326

Theo Steininger's avatar
Theo Steininger committed
327
        # check if all spaces in `self.domain` are either harmonic or
328
329
330
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
331
                self.logger.info(
332
                    "Field has a space in `domain` which is neither "
333
334
335
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
336
337
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
338
            spaces = range(len(self.domain))
339
340

        if len(spaces) == 0:
341
342
            raise ValueError(
                "No space for analysis specified.")
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        work_field = abs(self)
        work_field = work_field*work_field

        for space_index in spaces:
            work_field = self._single_power_analyze(
                                work_field=work_field,
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
                                binbounds=binbounds,
                                keep_phase_information=keep_phase_information)

        return work_field

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
                              binbounds, keep_phase_information):
361

362
        if not work_field.domain[space_index].harmonic:
363
364
            raise ValueError(
                "The analyzed space must be harmonic.")
365

366
367
368
369
370
371
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

372
        distribution_strategy = \
373
374
            work_field.val.get_axes_local_distribution_strategy(
                work_field.domain_axes[space_index])
375

376
        harmonic_domain = work_field.domain[space_index]
377
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
378
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
379
380
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
381

382
        # extract pindex and rho from power_domain
383
384
        pindex = power_domain.pindex
        rho = power_domain.rho
385

386
        if keep_phase_information:
387
            hermitian_part, anti_hermitian_part = \
388
                harmonic_domain.hermitian_decomposition(
389
390
                                    work_field.val,
                                    axes=work_field.domain_axes[space_index])
391
392

            [hermitian_power, anti_hermitian_power] = \
393
394
395
396
397
                [cls._calculate_power_spectrum(
                                    field_val=part,
                                    pindex=pindex,
                                    rho=rho,
                                    axes=work_field.domain_axes[space_index])
398
399
400
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
401

402
        else:
403
404
405
406
407
            power_spectrum = cls._calculate_power_spectrum(
                                    field_val=work_field.val,
                                    pindex=pindex,
                                    rho=rho,
                                    axes=work_field.domain_axes[space_index])
408
409

        # create the result field and put power_spectrum into it
410
        result_domain = list(work_field.domain)
411
        result_domain[space_index] = power_domain
412
        result_dtype = power_spectrum.dtype
413

414
        result_field = work_field.copy_empty(
415
                   domain=result_domain,
416
                   dtype=result_dtype,
417
                   distribution_strategy=power_spectrum.distribution_strategy)
418
419
420
421
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

422
423
    @classmethod
    def _calculate_power_spectrum(cls, field_val, pindex, rho, axes=None):
424
425

        if axes is not None:
426
427
428
429
430
431
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            target_strategy=field_val.distribution_strategy,
                            axes=axes)
        power_spectrum = pindex.bincount(weights=field_val,
432
433
434
435
436
437
438
439
440
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

441
442
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
443
444
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
445
            raise ValueError("pindex's distribution strategy must be "
446
447
448
449
450
451
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
452
                    "A slicing distributor shall not be reshaped to "
453
454
455
456
457
458
459
460
461
462
463
464
465
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

466
467
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
468
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
469

Theo Steininger's avatar
Theo Steininger committed
470
471
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
472

473
474
475
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
476
477
478
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
479
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
480
481
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
482
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
483
484
485
486
487
488
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
489
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
490
491
492
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
493

494
495
496
497
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
498
            stored in the `spaces` in `self`.
499

Theo Steininger's avatar
Theo Steininger committed
500
501
502
503
504
505
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

506
507
508
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
509
510
511
512
513

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

514
        """
Theo Steininger's avatar
Theo Steininger committed
515

516
517
518
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
519
520
521
        if spaces is None:
            spaces = range(len(self.domain))

522
523
524
525
526
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
527
528
529

        # create the result domain
        result_domain = list(self.domain)
530
531
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
532
            harmonic_domain = power_space.harmonic_partner
533
            result_domain[power_space_index] = harmonic_domain
534
535
536

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
537
        if real_power:
538
            result_list = [None]
539
540
        else:
            result_list = [None, None]
541

542
543
        result_list = [self.__class__.from_random(
                             'normal',
544
545
546
                             mean=mean,
                             std=std,
                             domain=result_domain,
547
                             dtype=np.complex,
548
                             distribution_strategy=self.distribution_strategy)
549
550
551
552
553
554
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
555
556

        spec = self.val.get_full_data()
557
558
        spec = np.sqrt(spec)

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

575
        if real_signal:
576
577
578
579
580
581
            result_val_list = [self._hermitian_decomposition(
                                                result_domain,
                                                result_val,
                                                spaces,
                                                result_list[0].domain_axes)[0]
                               for result_val in result_val_list]
582
583
584
585
586
587
588

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
589
        else:
590
591
592
593
            result = result_list[0] + 1j*result_list[1]

        return result

594
595
596
597
    @staticmethod
    def _hermitian_decomposition(domain, val, spaces, domain_axes):
        # hermitianize for the first space
        (h, a) = domain[spaces[0]].hermitian_decomposition(
598
599
600
                                               val,
                                               domain_axes[spaces[0]],
                                               preserve_gaussian_variance=True)
601
602
        # hermitianize all remaining spaces using the iterative formula
        for space in xrange(1, len(spaces)):
603
604
605
            (hh, ha) = domain[space].hermitian_decomposition(
                                              h,
                                              domain_axes[space],
606
                                              preserve_gaussian_variance=False)
607
608
609
            (ah, aa) = domain[space].hermitian_decomposition(
                                              a,
                                              domain_axes[space],
610
                                              preserve_gaussian_variance=False)
611
            c = (hh - ha - ah + aa).conjugate()
612
613
614
            full = (hh + ha + ah + aa)
            h = (full + c)/2.
            a = (full - c)/2.
615
616

        # correct variance
617

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        # in principle one must not correct the variance for the fixed
        # points of the hermitianization. However, for a complex field
        # the input field loses half of its power at its fixed points
        # in the `hermitian` part. Hence, here a factor of sqrt(2) is
        # also necessary!
        # => The hermitianization can be done on a space level since either
        # nothing must be done (LMSpace) or ALL points need a factor of sqrt(2)
        # => use the preserve_gaussian_variance flag in the
        # hermitian_decomposition method above.

        # This code is for educational purposes:
#        fixed_points = [domain[i].hermitian_fixed_points() for i in spaces]
#        # check if there was at least one flipping during hermitianization
#        flipped_Q = np.any([fp is not None for fp in fixed_points])
#        # if the array got flipped, correct the variance
#        if flipped_Q:
#            h *= np.sqrt(2)
#            a *= np.sqrt(2)
#
637
638
639
640
641
642
643
644
645
646
647
648
649
#            fixed_points = [[fp] if fp is None else fp for fp in fixed_points]
#            for product_point in itertools.product(*fixed_points):
#                slice_object = np.array((slice(None), )*len(val.shape),
#                                        dtype=np.object)
#                for i, sp in enumerate(spaces):
#                    point_component = product_point[i]
#                    if point_component is None:
#                        point_component = slice(None)
#                    slice_object[list(domain_axes[sp])] = point_component
#
#                slice_object = tuple(slice_object)
#                h[slice_object] /= np.sqrt(2)
#                a[slice_object] /= np.sqrt(2)
650
651
652

        return (h, a)

653
654
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
655
656
657

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
658
        pindex = power_space.pindex
659
660
661
662
663
664
665
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
666
            self.logger.warn(
667
                "The distribution_stragey of pindex does not fit the "
668
669
670
671
672
673
674
675
676
677
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
678
679
        local_rescaler = spec[local_blow_up]
        return local_rescaler
680

Theo Steininger's avatar
Theo Steininger committed
681
    # ---Properties---
682

Theo Steininger's avatar
Theo Steininger committed
683
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
684
        """ Sets the fields distributed_data_object.
685
686
687

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
688
        new_val : scalar, array-like, Field, None *optional*
689
690
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
691

692
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
693
694
            If False, Field tries to not copy the input data but use it
            directly.
695
696
697
698
699
700
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
701

702
703
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
704
705
            new_val = new_val.copy()
        self._val = new_val
706
        return self
csongor's avatar
csongor committed
707

708
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
709
        """ Returns the distributed_data_object associated with this Field.
710
711
712
713

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
714
715
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
716

717
718
719
720
721
722
723
724
725
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
726

727
728
729
        if self._val is None:
            self.set_val(None)

730
        if copy:
Theo Steininger's avatar
Theo Steininger committed
731
            return self._val.copy()
732
        else:
Theo Steininger's avatar
Theo Steininger committed
733
            return self._val
csongor's avatar
csongor committed
734

Theo Steininger's avatar
Theo Steininger committed
735
736
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
737
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
738

739
740
741
742
743
744
745
746
747
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
748

749
        return self.get_val(copy=False)
csongor's avatar
csongor committed
750

Theo Steininger's avatar
Theo Steininger committed
751
752
    @val.setter
    def val(self, new_val):
753
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
754

755
756
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
757
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
758

759
760
761
762
763
764
765
766
767
768
769
        Returns
        -------
        out : tuple
            The output object. The tuple contains the dimansions of the spaces
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
770

771
        shape_tuple = tuple(sp.shape for sp in self.domain)
772
773
774
775
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
776

777
        return global_shape
csongor's avatar
csongor committed
778

779
780
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
781
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
782

Theo Steininger's avatar
Theo Steininger committed
783
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
784

785
786
787
788
789
790
791
792
793
794
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
795

796
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
797
798
799
800
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
801

802
803
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
804
805
806
807
808
809
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
810
811
812
813
814
815
816
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
817
818
819
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
820
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
821
        try:
Theo Steininger's avatar
Theo Steininger committed
822
            return reduce(lambda x, y: x * y, volume_tuple)
823
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
824
            return 0.
825

Theo Steininger's avatar
Theo Steininger committed
826
    # ---Special unary/binary operations---
827

csongor's avatar
csongor committed
828
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
829
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
830

831
832
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
833
        x : scalar, d2o, Field, array_like
834
835
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
836

837
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
838
839
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
840

841
842
843
844
845
846
847
848
849
850
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
851
852
        if dtype is None:
            dtype = self.dtype
853
854
        else:
            dtype = np.dtype(dtype)
855

856
857
        casted_x = x

858
        for ind, sp in enumerate(self.domain):
859
            casted_x = sp.pre_cast(casted_x,
860
861
862
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
863
864

        for ind, sp in enumerate(self.domain):
865
866
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
867

868
        return casted_x
csongor's avatar
csongor committed
869

Theo Steininger's avatar
Theo Steininger committed
870
    def _actual_cast(self, x, dtype=None):
871
        if isinstance(x, Field):
csongor's avatar
csongor committed
872
873
874
875
876
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

877
        return_x = distributed_data_object(
878
879
880
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
881
882
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
883

884
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
885
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
886

887
888
889
890
891
892
893
894
895
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
896

897
898
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
899

900
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
901
902
            The new distribution strategy the Field shall have.

903
904
905
906
907
908
909
910
911
912
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
913

Theo Steininger's avatar
Theo Steininger committed
914
        copied_val = self.get_val(copy=True)
915
916
917
918
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
919
920
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
921

922
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
923
924
925
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
926
927
928
929
930
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
931

932
933
934
935
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
936

937
938
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
939

Theo Steininger's avatar
Theo Steininger committed
940
        distribution_strategy : string, all supported distribution strategies
941
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
942

943
944
945
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
946
            The output object.
947
948
949
950
951
952

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
953

Theo Steininger's avatar
Theo Steininger committed
954
955
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
956
        else:
Theo Steininger's avatar
Theo Steininger committed
957
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
958

Theo Steininger's avatar
Theo Steininger committed
959
960
961
962
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
963

964
965
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
966

Theo Steininger's avatar
Theo Steininger committed
967
968
969
970
971
972
973
974
975
976
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
977
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
978
979
980
981
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
982
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
983
        return new_field
csongor's avatar
csongor committed
984

Theo Steininger's avatar
Theo Steininger committed
985
986
987
988
989
990
991
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
992
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
993
994
995
996
997
998
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
999
        """ Weights the pixels of `self` with their invidual pixel-volume.
1000
1001
1002
1003

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
1004
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
1005

1006
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
1007
1008
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
1009

Theo Steininger's avatar
Theo Steininger committed
1010
1011
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
1012

1013
1014
1015
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
1016
            The weighted field.
1017
1018

        """
1019
        if inplace:
csongor's avatar
csongor committed
1020
1021
1022
1023
            new_field = self
        else:
            new_field = self.copy_empty()

1024
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
1025

1026
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
1027
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
1028
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
1029

1030
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
1031
1032
1033
1034
1035
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
1036
1037

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
1038
1039
        return new_field

1040
    def dot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar
Theo Steininger committed
1041
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
1042

1043
1044
1045
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
1046
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
1047

Theo Steininger's avatar
Theo Steininger committed
1048
1049
1050
        spaces : tuple of ints
            If the domain of `self` and `x` are not the same, `spaces` specfies
            the mapping.
Theo Steininger's avatar
Theo Steininger committed
1051

1052
        bare : boolean
Theo Steininger's avatar
Theo Steininger committed
1053
            If true, no volume factors will be included in the computation.
Theo Steininger's avatar
Theo Steininger committed
1054

1055
1056
1057
        Returns
        -------
        out : float, complex
Theo Steininger's avatar
Theo Steininger committed
1058