field.py 45.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

csongor's avatar
csongor committed
19
from __future__ import division
20 21

import itertools
csongor's avatar
csongor committed
22 23
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
24 25
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
26

27
from d2o import distributed_data_object,\
28
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
29

30
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
31

32
from nifty.domain_object import DomainObject
33

34
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
35

csongor's avatar
csongor committed
36
import nifty.nifty_utilities as utilities
37 38
from nifty.random import Random

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41 42 43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45 46
    In addition Field has methods to work with power-spectra.

47 48 49 50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

54 55 56 57
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59 60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62 63 64 65 66 67
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
68

69 70 71 72 73
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
74

75 76 77 78 79 80 81
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
82 83
        Name of the used distribution_strategy.

84 85 86 87 88 89 90
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
91

92 93 94 95 96 97 98 99 100 101 102
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
103

104 105 106 107 108
    See Also
    --------
    distributed_data_object

    """
109

Theo Steininger's avatar
Theo Steininger committed
110
    # ---Initialization methods---
111

112
    def __init__(self, domain=None, val=None, dtype=None,
113
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
114

115
        self.domain = self._parse_domain(domain=domain, val=val)
116
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
117

Theo Steininger's avatar
Theo Steininger committed
118
        self.dtype = self._infer_dtype(dtype=dtype,
119
                                       val=val)
120

121 122 123
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
124

125 126 127 128
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
129

130
    def _parse_domain(self, domain, val=None):
131
        if domain is None:
132 133 134 135
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
136
        elif isinstance(domain, DomainObject):
137
            domain = (domain,)
138 139 140
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
141
        for d in domain:
142
            if not isinstance(d, DomainObject):
143 144
                raise TypeError(
                    "Given domain contains something that is not a "
145
                    "DomainObject instance.")
csongor's avatar
csongor committed
146 147
        return domain

Theo Steininger's avatar
Theo Steininger committed
148 149 150 151 152 153 154 155 156 157
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
158

159
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
160
        if dtype is None:
161
            try:
162
                dtype = val.dtype
163
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
164 165 166
                try:
                    if val is None:
                        raise TypeError
167
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
168
                except(TypeError):
169
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
170
        else:
171
            dtype = np.dtype(dtype)
172

Theo Steininger's avatar
Theo Steininger committed
173
        return dtype
174

175 176
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
177
            if isinstance(val, distributed_data_object):
178
                distribution_strategy = val.distribution_strategy
179
            elif isinstance(val, Field):
180
                distribution_strategy = val.distribution_strategy
181
            else:
182
                self.logger.debug("distribution_strategy set to default!")
183
                distribution_strategy = gc['default_distribution_strategy']
184
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
185 186 187
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
188
        return distribution_strategy
189 190

    # ---Factory methods---
191

192
    @classmethod
193
    def from_random(cls, random_type, domain=None, dtype=None,
194
                    distribution_strategy=None, **kwargs):
195 196 197 198 199
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
200

201 202 203
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
204

205 206
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
207

208 209
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
210

211 212
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
213

214 215 216 217 218 219 220
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
221
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
222

223 224

        """
Theo Steininger's avatar
Theo Steininger committed
225

226
        # create a initially empty field
227
        f = cls(domain=domain, dtype=dtype,
228
                distribution_strategy=distribution_strategy)
229 230 231 232 233 234 235

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
236
        # extract the distributed_data_object from f and apply the appropriate
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
263
        else:
264 265
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
266

267
        return random_arguments
csongor's avatar
csongor committed
268

269 270
    # ---Powerspectral methods---

Theo Steininger's avatar
Theo Steininger committed
271 272
    def power_analyze(self, spaces=None, logarithmic=False, nbin=None,
                      binbounds=None, decompose_power=True):
Theo Steininger's avatar
Theo Steininger committed
273
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
274

Theo Steininger's avatar
Theo Steininger committed
275 276 277
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
278
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
279
        field, corresponding to the square root of the power spectrum.
280 281 282

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
283 284 285 286 287 288
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
            if spaces==None : Tries to synthesize for the whole domain
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
289
            {default : False}
Theo Steininger's avatar
Theo Steininger committed
290 291 292 293 294 295 296 297 298 299 300 301
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
            if binbounds==None : bins are inferred. Overwrites nbins and log
        decompose_power : boolean, *optional*
            Whether the analysed signal-space Field is intrinsically real or
            complex and if the power spectrum shall therefore be computed
            for the real and the imaginary part of the Field separately
            (default : True).
Theo Steininger's avatar
Theo Steininger committed
302

303 304 305 306
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
307 308
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
309
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
310

311 312
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
313
        out : Field
314 315 316 317 318 319
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
320

321
        """
Theo Steininger's avatar
Theo Steininger committed
322

Theo Steininger's avatar
Theo Steininger committed
323
        # check if all spaces in `self.domain` are either harmonic or
324 325 326
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
327
                self.logger.info(
328
                    "Field has a space in `domain` which is neither "
329 330 331
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
332 333 334 335 336
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
337 338 339
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
340 341

        if len(spaces) == 0:
342 343
            raise ValueError(
                "No space for analysis specified.")
344
        elif len(spaces) > 1:
345 346
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
347 348 349 350

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
351 352
            raise ValueError(
                "The analyzed space must be harmonic.")
353

354 355 356 357 358 359
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

360 361 362 363
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

364
        harmonic_domain = self.domain[space_index]
365
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
366
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
367 368
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
369

370
        # extract pindex and rho from power_domain
371 372
        pindex = power_domain.pindex
        rho = power_domain.rho
373

Theo Steininger's avatar
Theo Steininger committed
374
        if decompose_power:
375
            hermitian_part, anti_hermitian_part = \
376
                harmonic_domain.hermitian_decomposition(
377 378 379 380 381 382 383 384 385 386 387 388 389 390
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
391 392 393 394 395 396 397 398 399
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

Theo Steininger's avatar
Theo Steininger committed
400
        if decompose_power:
401 402 403 404
            result_dtype = np.complex
        else:
            result_dtype = np.float

405 406
        result_field = self.copy_empty(
                   domain=result_domain,
407
                   dtype=result_dtype,
408
                   distribution_strategy=power_spectrum.distribution_strategy)
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
437
            raise ValueError("pindex's distribution strategy must be "
438 439 440 441 442 443
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
444
                    "A slicing distributor shall not be reshaped to "
445 446 447 448 449 450 451 452 453 454 455 456 457
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

458 459
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
460
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
461

Theo Steininger's avatar
Theo Steininger committed
462 463
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
464

465 466 467
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
468 469 470
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
471
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
472 473
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
474
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
475 476 477 478 479 480
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
481
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
482 483 484
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
485

486 487 488 489
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
490
            stored in the `spaces` in `self`.
491

Theo Steininger's avatar
Theo Steininger committed
492 493 494 495 496 497
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

498 499 500
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
501 502 503 504 505

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

506
        """
Theo Steininger's avatar
Theo Steininger committed
507

508 509 510
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
511 512 513
        if spaces is None:
            spaces = range(len(self.domain))

514 515 516 517 518
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
519 520 521

        # create the result domain
        result_domain = list(self.domain)
522 523
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
524
            harmonic_domain = power_space.harmonic_partner
525
            result_domain[power_space_index] = harmonic_domain
526 527 528

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
529
        if real_power:
530
            result_list = [None]
531 532
        else:
            result_list = [None, None]
533

534 535
        result_list = [self.__class__.from_random(
                             'normal',
536 537 538
                             mean=mean,
                             std=std,
                             domain=result_domain,
539
                             dtype=np.complex,
540
                             distribution_strategy=self.distribution_strategy)
541 542 543 544 545 546
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

        spec = self.val.get_full_data()
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

565
        if real_signal:
566 567 568 569 570 571
            result_val_list = [self._hermitian_decomposition(
                                                result_domain,
                                                result_val,
                                                spaces,
                                                result_list[0].domain_axes)[0]
                               for result_val in result_val_list]
572 573 574 575 576 577 578

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
579
        else:
580 581 582 583
            result = result_list[0] + 1j*result_list[1]

        return result

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    @staticmethod
    def _hermitian_decomposition(domain, val, spaces, domain_axes):
        # hermitianize for the first space
        (h, a) = domain[spaces[0]].hermitian_decomposition(
                                                       val,
                                                       domain_axes[spaces[0]])
        # hermitianize all remaining spaces using the iterative formula
        for space in xrange(1, len(spaces)):
            (hh, ha) = \
                domain[space].hermitian_decomposition(h, domain_axes[space])
            (ah, aa) = \
                domain[space].hermitian_decomposition(a, domain_axes[space])
            c = (hh - ha - ah + aa).conjugate()
            h = (val + c)/2.
            a = (val - c)/2.

        # correct variance
        fixed_points = [domain[i].hermitian_fixed_points() for i in spaces]
        # check if there was at least one flipping during hermitianization
        flipped_Q = np.any([fp is not None for fp in fixed_points])
        # if the array got flipped, correct the variance
        if flipped_Q:
            h *= np.sqrt(2)
            a *= np.sqrt(2)
            fixed_points = [[fp] if fp is None else fp for fp in fixed_points]
            for product_point in itertools.product(*fixed_points):
                slice_object = np.array((slice(None), )*len(val.shape),
                                        dtype=np.object)
                for i, sp in enumerate(spaces):
                    point_component = product_point[i]
                    if point_component is None:
                        point_component = slice(None)
                    slice_object[list(domain_axes[sp])] = point_component

                slice_object = tuple(slice_object)
                h[slice_object] /= np.sqrt(2)
                a[slice_object] /= np.sqrt(2)

        return (h, a)

624 625
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
626 627 628

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
629
        pindex = power_space.pindex
630 631 632 633 634 635 636
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
637
            self.logger.warn(
638
                "The distribution_stragey of pindex does not fit the "
639 640 641 642 643 644 645 646 647 648
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
649 650
        local_rescaler = spec[local_blow_up]
        return local_rescaler
651

Theo Steininger's avatar
Theo Steininger committed
652
    # ---Properties---
653

Theo Steininger's avatar
Theo Steininger committed
654
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
655
        """ Sets the fields distributed_data_object.
656 657 658

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
659
        new_val : scalar, array-like, Field, None *optional*
660 661
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
662

663
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
664 665
            If False, Field tries to not copy the input data but use it
            directly.
666 667 668 669 670 671
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
672

673 674
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
675 676
            new_val = new_val.copy()
        self._val = new_val
677
        return self
csongor's avatar
csongor committed
678

679
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
680
        """ Returns the distributed_data_object associated with this Field.
681 682 683 684

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
685 686
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
687

688 689 690 691 692 693 694 695 696
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
697

698 699 700
        if self._val is None:
            self.set_val(None)

701
        if copy:
Theo Steininger's avatar
Theo Steininger committed
702
            return self._val.copy()
703
        else:
Theo Steininger's avatar
Theo Steininger committed
704
            return self._val
csongor's avatar
csongor committed
705

Theo Steininger's avatar
Theo Steininger committed
706 707
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
708
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
709

710 711 712 713 714 715 716 717 718
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
719

720
        return self.get_val(copy=False)
csongor's avatar
csongor committed
721

Theo Steininger's avatar
Theo Steininger committed
722 723
    @val.setter
    def val(self, new_val):
724
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
725

726 727
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
728
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
729

730 731 732 733 734 735 736 737 738 739 740
        Returns
        -------
        out : tuple
            The output object. The tuple contains the dimansions of the spaces
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
741

742
        shape_tuple = tuple(sp.shape for sp in self.domain)
743 744 745 746
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
747

748
        return global_shape
csongor's avatar
csongor committed
749

750 751
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
752
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
753

Theo Steininger's avatar
Theo Steininger committed
754
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
755

756 757 758 759 760 761 762 763 764 765
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
766

767
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
768 769 770 771
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
772

773 774
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
775 776 777 778 779 780
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
781 782 783 784 785 786 787
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
788 789 790
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
791
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
792
        try:
Theo Steininger's avatar
Theo Steininger committed
793
            return reduce(lambda x, y: x * y, volume_tuple)
794
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
795
            return 0.
796

Theo Steininger's avatar
Theo Steininger committed
797
    # ---Special unary/binary operations---
798

csongor's avatar
csongor committed
799
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
800
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
801

802 803
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
804
        x : scalar, d2o, Field, array_like
805 806
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
807

808
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
809 810
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
811

812 813 814 815 816 817 818 819 820 821
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
822 823
        if dtype is None:
            dtype = self.dtype
824 825
        else:
            dtype = np.dtype(dtype)
826

827 828
        casted_x = x

829
        for ind, sp in enumerate(self.domain):
830
            casted_x = sp.pre_cast(casted_x,
831 832 833
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
834 835

        for ind, sp in enumerate(self.domain):
836 837
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
838

839
        return casted_x
csongor's avatar
csongor committed
840

Theo Steininger's avatar
Theo Steininger committed
841
    def _actual_cast(self, x, dtype=None):
842
        if isinstance(x, Field):
csongor's avatar
csongor committed
843 844 845 846 847
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

848
        return_x = distributed_data_object(
849 850 851
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
852 853
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
854

855
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
856
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
857

858 859 860 861 862 863 864 865 866
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
867

868 869
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
870

871
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
872 873
            The new distribution strategy the Field shall have.

874 875 876 877 878 879 880 881 882 883
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
884

Theo Steininger's avatar
Theo Steininger committed
885
        copied_val = self.get_val(copy=True)
886 887 888 889
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
890 891
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
892

893
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
894 895 896
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
897 898 899 900 901
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
902

903 904 905 906
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
907

908 909
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
910

Theo Steininger's avatar
Theo Steininger committed
911
        distribution_strategy : string, all supported distribution strategies
912
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
913

914 915 916
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
917
            The output object.
918 919 920 921 922 923

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
924

Theo Steininger's avatar
Theo Steininger committed
925 926
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
927
        else:
Theo Steininger's avatar
Theo Steininger committed
928
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
929

Theo Steininger's avatar
Theo Steininger committed
930 931 932 933
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
934

935 936
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
937

Theo Steininger's avatar
Theo Steininger committed
938 939 940 941 942 943 944 945 946 947
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
948
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
949 950 951 952
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
953
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
954
        return new_field
csongor's avatar
csongor committed
955

Theo Steininger's avatar
Theo Steininger committed
956 957 958 959 960 961 962
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
963
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
964 965 966 967 968 969
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
970
        """ Weights the pixels of `self` with their invidual pixel-volume.
971 972 973 974

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
975
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
976

977
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
978 979
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
980

Theo Steininger's avatar
Theo Steininger committed
981 982
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
983

984 985 986
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
987
            The weighted field.
988 989

        """
990
        if inplace:
csongor's avatar
csongor committed
991 992 993 994
            new_field = self
        else:
            new_field = self.copy_empty()

995
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
996

997
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
998
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
999
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
1000

1001
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
1002 1003 1004 1005 1006
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
1007 1008

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
1009 1010
        return new_field

1011
    def dot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar
Theo Steininger committed
1012
        """ Computes the volume-factor-aware dot product of 'self' with x.