field.py 31.5 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

4
from d2o import distributed_data_object,\
5
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
6

7
from nifty.config import about,\
8
                         nifty_configuration as gc
csongor's avatar
csongor committed
9

10
from nifty.field_types import FieldType
11

12
from nifty.spaces.space import Space
13
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
14

csongor's avatar
csongor committed
15
import nifty.nifty_utilities as utilities
16
17
from nifty.random import Random

csongor's avatar
csongor committed
18

19
class Field(object):
theos's avatar
theos committed
20
    # ---Initialization methods---
21

theos's avatar
theos committed
22
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
23
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
24

25
        self.domain = self._parse_domain(domain=domain, val=val)
26
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
27

28
        self.field_type = self._parse_field_type(field_type, val=val)
29

theos's avatar
theos committed
30
31
32
33
34
35
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
36

theos's avatar
theos committed
37
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
38
                                       val=val,
theos's avatar
theos committed
39
40
                                       domain=self.domain,
                                       field_type=self.field_type)
41

42
43
44
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
45
46
47

        self.set_val(new_val=val, copy=copy)

48
    def _parse_domain(self, domain, val=None):
49
        if domain is None:
50
51
52
53
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
54
        elif isinstance(domain, Space):
55
            domain = (domain,)
56
57
58
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
59
        for d in domain:
60
            if not isinstance(d, Space):
csongor's avatar
csongor committed
61
                raise TypeError(about._errors.cstring(
62
63
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
64
65
        return domain

66
    def _parse_field_type(self, field_type, val=None):
67
        if field_type is None:
68
69
70
71
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
72
        elif isinstance(field_type, FieldType):
73
            field_type = (field_type,)
74
75
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
76
        for ft in field_type:
77
            if not isinstance(ft, FieldType):
78
                raise TypeError(about._errors.cstring(
79
                    "ERROR: Given object is not a nifty.FieldType."))
80
81
        return field_type

theos's avatar
theos committed
82
83
84
85
86
87
88
89
90
91
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
92

93
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
94
        if dtype is None:
95
96
97
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
98
99
100
101
102
103
104
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
105

theos's avatar
theos committed
106
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
107

theos's avatar
theos committed
108
        return dtype
109

110
111
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
112
            if isinstance(val, distributed_data_object):
113
                distribution_strategy = val.distribution_strategy
114
            elif isinstance(val, Field):
115
                distribution_strategy = val.distribution_strategy
116
117
            else:
                about.warnings.cprint("WARNING: Datamodel set to default!")
118
                distribution_strategy = gc['default_distribution_strategy']
119
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
120
            raise ValueError(about._errors.cstring(
121
122
                    "ERROR: distribution_strategy must be a global-type "
                    "strategy."))
123
        return distribution_strategy
124
125

    # ---Factory methods---
126

127
128
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
129
                    distribution_strategy=None, **kwargs):
130
131
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
132
                distribution_strategy=distribution_strategy)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

#        elif random_type == 'syn':
#            pass

csongor's avatar
csongor committed
171
        else:
172
173
            raise KeyError(about._errors.cstring(
                "ERROR: unsupported random key '" + str(random_type) + "'."))
csongor's avatar
csongor committed
174

175
        return random_arguments
csongor's avatar
csongor committed
176

177
178
179
180
181
182
183
184
185
186
187
188
189
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for analysis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
            raise ValueError(about._errors.cstring(
theos's avatar
theos committed
210
                "ERROR: The analyzed space must be harmonic."))
211

212
213
214
215
216
217
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

218
219
220
221
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

222
223
224
225
226
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

227
228
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
229
                                  distribution_strategy=distribution_strategy,
230
231
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
232

233
        # extract pindex and rho from power_domain
234
235
        pindex = power_domain.pindex
        rho = power_domain.rho
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
            raise ValueError("ERROR: pindex's distribution strategy must be "
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
                    "ERROR: A slicing distributor shall not be reshaped to "
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

313
    def power_synthesize(self, spaces=None, real_signal=True):
314
        # assert that all spaces in `self.domain` are either of signal-type or
315
316
        # power_space instances
        for sp in self.domain:
317
            if not sp.harmonic and not isinstance(sp, PowerSpace):
318
319
320
321
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for synthesis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
            raise ValueError(about._errors.cstring(
                "ERROR: A PowerSpace is needed for field synthetization."))

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

358
359
360
361
362
363
        result_list = [self.__class__.from_random(
                             'normal',
                             result_domain,
                             dtype=harmonic_domain.dtype,
                             field_type=self.field_type,
                             distribution_strategy=self.distribution_strategy)
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
            about.warnings.cprint(
                "WARNING: The distribution_stragey of pindex does not fit the "
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
        local_spec = self.val.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
        local_rescaler = local_spec[local_blow_up]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
424

theos's avatar
theos committed
425
    # ---Properties---
426

theos's avatar
theos committed
427
    def set_val(self, new_val=None, copy=False):
428
429
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
430
431
432
            new_val = new_val.copy()
        self._val = new_val
        return self._val
csongor's avatar
csongor committed
433

434
435
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
436
            return self._val.copy()
437
        else:
theos's avatar
theos committed
438
            return self._val
csongor's avatar
csongor committed
439

theos's avatar
theos committed
440
441
442
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
443

theos's avatar
theos committed
444
445
446
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
447

448
449
    @property
    def shape(self):
450
451
452
453
454
455
456
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
457

458
        return global_shape
csongor's avatar
csongor committed
459

460
461
    @property
    def dim(self):
theos's avatar
theos committed
462
463
464
465
466
467
468
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
469

470
471
    @property
    def dof(self):
theos's avatar
theos committed
472
473
474
475
476
477
478
479
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
480
        try:
theos's avatar
theos committed
481
            return reduce(lambda x, y: x * y, volume_tuple)
482
        except TypeError:
theos's avatar
theos committed
483
            return 0
484

theos's avatar
theos committed
485
    # ---Special unary/binary operations---
486

csongor's avatar
csongor committed
487
488
489
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
490
491
        else:
            dtype = np.dtype(dtype)
492

493
494
495
496
497
498
499
500
501
        for ind, sp in enumerate(self.domain):
            casted_x = sp.pre_cast(x,
                                   axes=self.domain_axes[ind])

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.pre_cast(casted_x,
                                   axes=self.field_type_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
502
503

        for ind, sp in enumerate(self.domain):
504
505
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
506
507

        for ind, ft in enumerate(self.field_type):
508
509
            casted_x = ft.post_cast(casted_x,
                                    axes=self.field_type_axes[ind])
510
511

        return casted_x
csongor's avatar
csongor committed
512

theos's avatar
theos committed
513
    def _actual_cast(self, x, dtype=None):
514
        if isinstance(x, Field):
csongor's avatar
csongor committed
515
516
517
518
519
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

520
        return_x = distributed_data_object(
521
522
523
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
524
525
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
526
527

    def copy(self, domain=None, dtype=None, field_type=None,
528
             distribution_strategy=None):
theos's avatar
theos committed
529
        copied_val = self.get_val(copy=True)
530
531
532
533
534
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                field_type=field_type,
                                distribution_strategy=distribution_strategy)
theos's avatar
theos committed
535
536
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
537

theos's avatar
theos committed
538
    def copy_empty(self, domain=None, dtype=None, field_type=None,
539
                   distribution_strategy=None):
theos's avatar
theos committed
540
541
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
542
        else:
theos's avatar
theos committed
543
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
544

theos's avatar
theos committed
545
546
547
548
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
549

theos's avatar
theos committed
550
551
552
553
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
554

555
556
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
557

theos's avatar
theos committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
572
                distribution_strategy == self.distribution_strategy):
theos's avatar
theos committed
573
574
575
576
577
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
578
                              distribution_strategy=distribution_strategy)
theos's avatar
theos committed
579
        return new_field
csongor's avatar
csongor committed
580

theos's avatar
theos committed
581
582
583
584
585
586
587
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
588
            if key != '_val':
theos's avatar
theos committed
589
590
591
592
593
594
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
595
        if inplace:
csongor's avatar
csongor committed
596
597
598
599
            new_field = self
        else:
            new_field = self.copy_empty()

600
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
601

csongor's avatar
csongor committed
602
        if spaces is None:
theos's avatar
theos committed
603
604
605
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
606

607
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
608
609
610
611
612
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
613
614

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
615
616
        return new_field

theos's avatar
theos committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

646
    def norm(self, q=2):
csongor's avatar
csongor committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
661
        if q == 2:
662
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
663
        else:
664
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

681
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
682
        new_val = new_val.conjugate()
683
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
684
685
686

        return work_field

theos's avatar
theos committed
687
    # ---General unary/contraction methods---
688

theos's avatar
theos committed
689
690
    def __pos__(self):
        return self.copy()
691

theos's avatar
theos committed
692
693
694
695
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
696
697
        return return_field

theos's avatar
theos committed
698
699
700
701
702
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
703

theos's avatar
theos committed
704
705
706
707
708
709
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
710

theos's avatar
theos committed
711
712
713
714
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
715

theos's avatar
theos committed
716
717
718
719
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
720
        try:
theos's avatar
theos committed
721
            axes_list = reduce(lambda x, y: x+y, axes_list)
722
        except TypeError:
theos's avatar
theos committed
723
            axes_list = ()
csongor's avatar
csongor committed
724

theos's avatar
theos committed
725
726
727
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
728

theos's avatar
theos committed
729
730
731
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
732
        else:
theos's avatar
theos committed
733
734
735
736
737
738
739
740
741
742
743
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
744

theos's avatar
theos committed
745
746
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
747

theos's avatar
theos committed
748
749
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
750

theos's avatar
theos committed
751
752
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
753

theos's avatar
theos committed
754
755
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
756

theos's avatar
theos committed
757
758
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
759

theos's avatar
theos committed
760
761
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
762

theos's avatar
theos committed
763
764
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
765

theos's avatar
theos committed
766
767
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
768

theos's avatar
theos committed
769
770
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
771

theos's avatar
theos committed
772
773
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
774

theos's avatar
theos committed
775
776
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
777

theos's avatar
theos committed
778
    # ---General binary methods---
csongor's avatar
csongor committed
779

theos's avatar
theos committed
780
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
781
        # if other is a field, make sure that the domains match
782
        if isinstance(other, Field):
theos's avatar
theos committed
783
784
785
786
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
787
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
788
789
790
791
792
793
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
794

theos's avatar
theos committed
795
796
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
797
798
799
800
801
802

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
803
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
804
805
806
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
807
        return self._binary_helper(other, op='__add__')
808

809
    def __radd__(self, other):
theos's avatar
theos committed
810
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
811
812

    def __iadd__(self, other):
theos's avatar
theos committed
813
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
814
815

    def __sub__(self, other):
theos's avatar
theos committed
816
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
817
818

    def __rsub__(self, other):
theos's avatar
theos committed
819
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
820
821

    def __isub__(self, other):
theos's avatar
theos committed
822
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
823
824

    def __mul__(self, other):
theos's avatar
theos committed
825
        return self._binary_helper(other, op='__mul__')
826

827
    def __rmul__(self, other):
theos's avatar
theos committed
828
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
829
830

    def __imul__(self, other):
theos's avatar
theos committed
831
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
832
833

    def __div__(self, other):
theos's avatar
theos committed
834
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
835
836

    def __rdiv__(self, other):
theos's avatar
theos committed
837
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
838
839

    def __idiv__(self, other):
theos's avatar
theos committed
840
        return self._binary_helper(other, op='__idiv__', inplace=True)
841

csongor's avatar
csongor committed
842
    def __pow__(self, other):
theos's avatar
theos committed
843
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
844
845

    def __rpow__(self, other):
theos's avatar
theos committed
846
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
847
848

    def __ipow__(self, other):
theos's avatar
theos committed
849
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
850
851

    def __lt__(self, other):
theos's avatar
theos committed
852
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
853
854

    def __le__(self, other):
theos's avatar
theos committed
855
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
856
857
858
859
860

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
861
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
862
863
864
865
866

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
867
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
868
869

    def __ge__(self, other):
theos's avatar
theos committed
870
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
871
872

    def __gt__(self, other):
theos's avatar
theos committed
873
874
875
876
877
878
879
880
881
882
883
884
885
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
886

887

888
class EmptyField(Field):
csongor's avatar
csongor committed
889
890
    def __init__(self):
        pass