field.py 31 KB
Newer Older
csongor's avatar
csongor committed
1 2 3
from __future__ import division
import numpy as np

4
from d2o import distributed_data_object,\
5
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
6

7
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
8

9
from nifty.field_types import FieldType
10

11
from nifty.spaces.space import Space
12
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
13

csongor's avatar
csongor committed
14
import nifty.nifty_utilities as utilities
15 16
from nifty.random import Random

17 18 19
import logging
logger = logging.getLogger('NIFTy.Field')

csongor's avatar
csongor committed
20

21
class Field(object):
theos's avatar
theos committed
22
    # ---Initialization methods---
23

theos's avatar
theos committed
24
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
25
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
26

27
        self.domain = self._parse_domain(domain=domain, val=val)
28
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
29

30
        self.field_type = self._parse_field_type(field_type, val=val)
31

theos's avatar
theos committed
32 33 34 35 36 37
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
38

theos's avatar
theos committed
39
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
40
                                       val=val,
theos's avatar
theos committed
41 42
                                       domain=self.domain,
                                       field_type=self.field_type)
43

44 45 46
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
47 48 49

        self.set_val(new_val=val, copy=copy)

50
    def _parse_domain(self, domain, val=None):
51
        if domain is None:
52 53 54 55
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
56
        elif isinstance(domain, Space):
57
            domain = (domain,)
58 59 60
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
61
        for d in domain:
62
            if not isinstance(d, Space):
63 64 65
                raise TypeError(
                    "Given domain contains something that is not a "
                    "nifty.space.")
csongor's avatar
csongor committed
66 67
        return domain

68
    def _parse_field_type(self, field_type, val=None):
69
        if field_type is None:
70 71 72 73
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
74
        elif isinstance(field_type, FieldType):
75
            field_type = (field_type,)
76 77
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
78
        for ft in field_type:
79
            if not isinstance(ft, FieldType):
80 81
                raise TypeError(
                    "Given object is not a nifty.FieldType.")
82 83
        return field_type

theos's avatar
theos committed
84 85 86 87 88 89 90 91 92 93
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
94

95
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
96
        if dtype is None:
97 98 99
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
100 101 102 103 104 105 106
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
107

theos's avatar
theos committed
108
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
109

theos's avatar
theos committed
110
        return dtype
111

112 113
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
114
            if isinstance(val, distributed_data_object):
115
                distribution_strategy = val.distribution_strategy
116
            elif isinstance(val, Field):
117
                distribution_strategy = val.distribution_strategy
118
            else:
119
                logger.info("Datamodel set to default!")
120
                distribution_strategy = gc['default_distribution_strategy']
121
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
122 123 124
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
125
        return distribution_strategy
126 127

    # ---Factory methods---
128

129 130
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
131
                    distribution_strategy=None, **kwargs):
132 133
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
134
                distribution_strategy=distribution_strategy)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
170
        else:
171 172
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
173

174
        return random_arguments
csongor's avatar
csongor committed
175

176 177 178 179 180 181 182 183 184
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
185
                    "Field has a space in `domain` which is neither "
186 187 188
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
189 190 191 192 193
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
194 195 196
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
197 198

        if len(spaces) == 0:
199 200
            raise ValueError(
                "No space for analysis specified.")
201
        elif len(spaces) > 1:
202 203
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
204 205 206 207

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
208 209
            raise ValueError(
                "The analyzed space must be harmonic.")
210

211 212 213 214 215 216
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

217 218 219 220
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

221 222 223 224 225
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

226 227
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
228
                                  distribution_strategy=distribution_strategy,
229 230
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
231

232
        # extract pindex and rho from power_domain
233 234
        pindex = power_domain.pindex
        rho = power_domain.rho
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
291
            raise ValueError("pindex's distribution strategy must be "
292 293 294 295 296 297
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
298
                    "A slicing distributor shall not be reshaped to "
299 300 301 302 303 304 305 306 307 308 309 310 311
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

312
    def power_synthesize(self, spaces=None, real_signal=True):
313
        # assert that all spaces in `self.domain` are either of signal-type or
314 315
        # power_space instances
        for sp in self.domain:
316
            if not sp.harmonic and not isinstance(sp, PowerSpace):
317
                raise AttributeError(
318
                    "Field has a space in `domain` which is neither "
319 320
                    "harmonic nor a PowerSpace.")

321 322 323 324 325 326
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
327 328 329
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
330 331

        if len(spaces) == 0:
332 333
            raise ValueError(
                "No space for synthesis specified.")
334
        elif len(spaces) > 1:
335 336
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
337 338 339 340

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
341 342
            raise ValueError(
                "A PowerSpace is needed for field synthetization.")
343 344 345 346 347 348 349 350 351 352 353 354 355 356

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

357 358 359 360 361 362
        result_list = [self.__class__.from_random(
                             'normal',
                             result_domain,
                             dtype=harmonic_domain.dtype,
                             field_type=self.field_type,
                             distribution_strategy=self.distribution_strategy)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
387 388
            logger.warn(
                "The distribution_stragey of pindex does not fit the "
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
        local_spec = self.val.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
        local_rescaler = local_spec[local_blow_up]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
423

theos's avatar
theos committed
424
    # ---Properties---
425

theos's avatar
theos committed
426
    def set_val(self, new_val=None, copy=False):
427 428
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
429 430 431
            new_val = new_val.copy()
        self._val = new_val
        return self._val
csongor's avatar
csongor committed
432

433 434
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
435
            return self._val.copy()
436
        else:
theos's avatar
theos committed
437
            return self._val
csongor's avatar
csongor committed
438

theos's avatar
theos committed
439 440 441
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
442

theos's avatar
theos committed
443 444 445
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
446

447 448
    @property
    def shape(self):
449 450 451 452 453 454 455
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
456

457
        return global_shape
csongor's avatar
csongor committed
458

459 460
    @property
    def dim(self):
theos's avatar
theos committed
461 462 463 464 465 466 467
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
468

469 470
    @property
    def dof(self):
theos's avatar
theos committed
471 472 473 474 475 476 477 478
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
479
        try:
theos's avatar
theos committed
480
            return reduce(lambda x, y: x * y, volume_tuple)
481
        except TypeError:
theos's avatar
theos committed
482
            return 0
483

theos's avatar
theos committed
484
    # ---Special unary/binary operations---
485

csongor's avatar
csongor committed
486 487 488
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
489 490
        else:
            dtype = np.dtype(dtype)
491

492 493 494 495 496 497 498 499 500
        for ind, sp in enumerate(self.domain):
            casted_x = sp.pre_cast(x,
                                   axes=self.domain_axes[ind])

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.pre_cast(casted_x,
                                   axes=self.field_type_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
501 502

        for ind, sp in enumerate(self.domain):
503 504
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
505 506

        for ind, ft in enumerate(self.field_type):
507 508
            casted_x = ft.post_cast(casted_x,
                                    axes=self.field_type_axes[ind])
509 510

        return casted_x
csongor's avatar
csongor committed
511

theos's avatar
theos committed
512
    def _actual_cast(self, x, dtype=None):
513
        if isinstance(x, Field):
csongor's avatar
csongor committed
514 515 516 517 518
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

519
        return_x = distributed_data_object(
520 521 522
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
523 524
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
525 526

    def copy(self, domain=None, dtype=None, field_type=None,
527
             distribution_strategy=None):
theos's avatar
theos committed
528
        copied_val = self.get_val(copy=True)
529 530 531 532 533
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                field_type=field_type,
                                distribution_strategy=distribution_strategy)
theos's avatar
theos committed
534 535
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
536

theos's avatar
theos committed
537
    def copy_empty(self, domain=None, dtype=None, field_type=None,
538
                   distribution_strategy=None):
theos's avatar
theos committed
539 540
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
541
        else:
theos's avatar
theos committed
542
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
543

theos's avatar
theos committed
544 545 546 547
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
548

theos's avatar
theos committed
549 550 551 552
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
553

554 555
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
556

theos's avatar
theos committed
557 558 559 560 561 562 563 564 565 566 567 568 569 570
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
571
                distribution_strategy == self.distribution_strategy):
theos's avatar
theos committed
572 573 574 575 576
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
577
                              distribution_strategy=distribution_strategy)
theos's avatar
theos committed
578
        return new_field
csongor's avatar
csongor committed
579

theos's avatar
theos committed
580 581 582 583 584 585 586
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
587
            if key != '_val':
theos's avatar
theos committed
588 589 590 591 592 593
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
594
        if inplace:
csongor's avatar
csongor committed
595 596 597 598
            new_field = self
        else:
            new_field = self.copy_empty()

599
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
600

csongor's avatar
csongor committed
601
        if spaces is None:
theos's avatar
theos committed
602 603 604
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
605

606
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
607 608 609 610 611
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
612 613

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
614 615
        return new_field

theos's avatar
theos committed
616 617 618 619 620 621 622 623 624
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
625 626
                raise ValueError(
                    "domains are incompatible.")
theos's avatar
theos committed
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

645
    def norm(self, q=2):
csongor's avatar
csongor committed
646 647 648 649 650 651 652 653 654 655 656 657 658 659
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
660
        if q == 2:
661
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
662
        else:
663
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

680
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
681
        new_val = new_val.conjugate()
682
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
683 684 685

        return work_field

theos's avatar
theos committed
686
    # ---General unary/contraction methods---
687

theos's avatar
theos committed
688 689
    def __pos__(self):
        return self.copy()
690

theos's avatar
theos committed
691 692 693 694
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
695 696
        return return_field

theos's avatar
theos committed
697 698 699 700 701
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
702

theos's avatar
theos committed
703 704 705 706 707 708
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
709

theos's avatar
theos committed
710 711 712 713
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
714

theos's avatar
theos committed
715 716 717 718
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
719
        try:
theos's avatar
theos committed
720
            axes_list = reduce(lambda x, y: x+y, axes_list)
721
        except TypeError:
theos's avatar
theos committed
722
            axes_list = ()
csongor's avatar
csongor committed
723

theos's avatar
theos committed
724 725 726
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
727

theos's avatar
theos committed
728 729 730
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
731
        else:
theos's avatar
theos committed
732 733 734 735 736 737 738 739 740 741 742
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
743

theos's avatar
theos committed
744 745
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
746

theos's avatar
theos committed
747 748
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
749

theos's avatar
theos committed
750 751
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
752

theos's avatar
theos committed
753 754
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
755

theos's avatar
theos committed
756 757
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
758

theos's avatar
theos committed
759 760
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
761

theos's avatar
theos committed
762 763
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
764

theos's avatar
theos committed
765 766
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
767

theos's avatar
theos committed
768 769
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
770

theos's avatar
theos committed
771 772
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
773

theos's avatar
theos committed
774 775
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
776

theos's avatar
theos committed
777
    # ---General binary methods---
csongor's avatar
csongor committed
778

theos's avatar
theos committed
779
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
780
        # if other is a field, make sure that the domains match
781
        if isinstance(other, Field):
theos's avatar
theos committed
782 783 784 785
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
786
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
787 788 789
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
790 791
                raise ValueError(
                    "domains are incompatible.")
theos's avatar
theos committed
792
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
793

theos's avatar
theos committed
794 795
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
796 797 798 799 800 801

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
802
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
803 804 805
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
806
        return self._binary_helper(other, op='__add__')
807

808
    def __radd__(self, other):
theos's avatar
theos committed
809
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
810 811

    def __iadd__(self, other):
theos's avatar
theos committed
812
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
813 814

    def __sub__(self, other):
theos's avatar
theos committed
815
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
816 817

    def __rsub__(self, other):
theos's avatar
theos committed
818
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
819 820

    def __isub__(self, other):
theos's avatar
theos committed
821
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
822 823

    def __mul__(self, other):
theos's avatar
theos committed
824
        return self._binary_helper(other, op='__mul__')
825

826
    def __rmul__(self, other):
theos's avatar
theos committed
827
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
828 829

    def __imul__(self, other):
theos's avatar
theos committed
830
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
831 832

    def __div__(self, other):
theos's avatar
theos committed
833
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
834 835

    def __rdiv__(self, other):
theos's avatar
theos committed
836
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
837 838

    def __idiv__(self, other):
theos's avatar
theos committed
839
        return self._binary_helper(other, op='__idiv__', inplace=True)
840

csongor's avatar
csongor committed
841
    def __pow__(self, other):
theos's avatar
theos committed
842
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
843 844

    def __rpow__(self, other):
theos's avatar
theos committed
845
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
846 847

    def __ipow__(self, other):
theos's avatar
theos committed
848
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
849 850

    def __lt__(self, other):
theos's avatar
theos committed
851
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
852 853

    def __le__(self, other):
theos's avatar
theos committed
854
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
855 856 857 858 859

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
860
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
861 862 863 864 865

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
866
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
867 868

    def __ge__(self, other):
theos's avatar
theos committed
869
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
870 871

    def __gt__(self, other):
theos's avatar
theos committed
872 873 874 875 876 877 878 879 880 881 882 883 884
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
885

886

887
class EmptyField(Field):
csongor's avatar
csongor committed
888 889
    def __init__(self):
        pass