scipy_minimizer.py 5.38 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Martin Reinecke's avatar
stage 1    
Martin Reinecke committed
19
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20
21
22
from .minimizer import Minimizer
from ..field import Field
from .. import dobj
Martin Reinecke's avatar
Martin Reinecke committed
23
from ..logger import logger
24
25
26
from .iteration_controller import IterationController


Martin Reinecke's avatar
Martin Reinecke committed
27
28
29
30
31
32
33
34
35
36
37
38
def _toNdarray(fld):
    return fld.to_global_data().reshape(-1)


def _toFlatNdarray(fld):
    return fld.val.flatten()


def _toField(arr, dom):
    return Field.from_global_data(dom, arr.reshape(dom.shape))


39
40
41
42
43
44
class _MinHelper(object):
    def __init__(self, energy):
        self._energy = energy
        self._domain = energy.position.domain

    def _update(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
45
46
        pos = _toField(x, self._domain)
        if (pos != self._energy.position).any():
47
48
49
50
51
52
53
54
            self._energy = self._energy.at(pos.locked_copy())

    def fun(self, x):
        self._update(x)
        return self._energy.value

    def jac(self, x):
        self._update(x)
Martin Reinecke's avatar
Martin Reinecke committed
55
        return _toFlatNdarray(self._energy.gradient)
56
57
58

    def hessp(self, x, p):
        self._update(x)
Martin Reinecke's avatar
Martin Reinecke committed
59
        res = self._energy.metric(_toField(p, self._domain))
Martin Reinecke's avatar
Martin Reinecke committed
60
        return _toFlatNdarray(res)
Martin Reinecke's avatar
Martin Reinecke committed
61
62
63
64
65
66
67
68
69
70
71
72
73


class ScipyMinimizer(Minimizer):
    """Scipy-based minimizer

    Parameters
    ----------
    method     : str
        The selected Scipy minimization method.
    options    : dictionary
        A set of custom options for the selected minimizer.
    """

74
    def __init__(self, method, options, need_hessp, bounds):
Martin Reinecke's avatar
Martin Reinecke committed
75
76
77
78
79
80
        super(ScipyMinimizer, self).__init__()
        if not dobj.is_numpy():
            raise NotImplementedError
        self._method = method
        self._options = options
        self._need_hessp = need_hessp
81
        self._bounds = bounds
Martin Reinecke's avatar
Martin Reinecke committed
82
83
84

    def __call__(self, energy):
        import scipy.optimize as opt
85
86
87
88
89
90
91
92
        hlp = _MinHelper(energy)
        energy = None  # drop handle, since we don't need it any more
        bounds = None
        if self._bounds is not None:
            if len(self._bounds) == 2:
                lo = self._bounds[0]
                hi = self._bounds[1]
                bounds = [(lo, hi)]*hlp._energy.position.size
Martin Reinecke's avatar
Martin Reinecke committed
93
            else:
94
95
96
97
98
99
                raise ValueError("unrecognized bounds")

        x = hlp._energy.position.val.flatten()
        hessp = hlp.hessp if self._need_hessp else None
        r = opt.minimize(hlp.fun, x, method=self._method, jac=hlp.jac,
                         hessp=hessp, options=self._options, bounds=bounds)
Martin Reinecke's avatar
Martin Reinecke committed
100
        if not r.success:
101
            logger.error("Problem in Scipy minimization: {}".format(r.message))
102
103
            return hlp._energy, IterationController.ERROR
        return hlp._energy, IterationController.CONVERGED
Martin Reinecke's avatar
Martin Reinecke committed
104
105


106
def NewtonCG(xtol, maxiter, disp=False):
Martin Reinecke's avatar
Martin Reinecke committed
107
108
109
110
111
112
    """Returns a ScipyMinimizer object carrying out the Newton-CG algorithm.

    See Also
    --------
    ScipyMinimizer
    """
Martin Reinecke's avatar
fix    
Martin Reinecke committed
113
    options = {"xtol": xtol, "maxiter": maxiter, "disp": disp}
114
    return ScipyMinimizer("Newton-CG", options, True, None)
Martin Reinecke's avatar
Martin Reinecke committed
115
116


117
def L_BFGS_B(ftol, gtol, maxiter, maxcor=10, disp=False, bounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
118
119
120
121
122
123
    """Returns a ScipyMinimizer object carrying out the L-BFGS-B algorithm.

    See Also
    --------
    ScipyMinimizer
    """
124
    options = {"ftol": ftol, "gtol": gtol, "maxiter": maxiter,
Martin Reinecke's avatar
fix    
Martin Reinecke committed
125
               "maxcor": maxcor, "disp": disp}
126
    return ScipyMinimizer("L-BFGS-B", options, False, bounds)
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147


class ScipyCG(Minimizer):
    def __init__(self, tol, maxiter):
        super(ScipyCG, self).__init__()
        if not dobj.is_numpy():
            raise NotImplementedError
        self._tol = tol
        self._maxiter = maxiter

    def __call__(self, energy, preconditioner=None):
        from scipy.sparse.linalg import LinearOperator as scipy_linop, cg
        from .quadratic_energy import QuadraticEnergy
        if not isinstance(energy, QuadraticEnergy):
            raise ValueError("need a quadratic energy for CG")

        class mymatvec(object):
            def __init__(self, op):
                self._op = op

            def __call__(self, inp):
Martin Reinecke's avatar
Martin Reinecke committed
148
                return _toNdarray(self._op(_toField(inp, self._op.domain)))
149
150

        op = energy._A
Martin Reinecke's avatar
Martin Reinecke committed
151
152
        b = _toNdarray(energy._b)
        sx = _toNdarray(energy.position)
153
154
155
156
157
158
159
160
161
162
        sci_op = scipy_linop(shape=(op.domain.size, op.target.size),
                             matvec=mymatvec(op))
        prec_op = None
        if preconditioner is not None:
            prec_op = scipy_linop(shape=(op.domain.size, op.target.size),
                                  matvec=mymatvec(preconditioner))
        res, stat = cg(sci_op, b, x0=sx, tol=self._tol, M=prec_op,
                       maxiter=self._maxiter)
        stat = (IterationController.CONVERGED if stat >= 0 else
                IterationController.ERROR)
Martin Reinecke's avatar
Martin Reinecke committed
163
        return energy.at(_toField(res, op.domain)), stat