nifty_core.py 107 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2013 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46
47
48
49
50
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

51
52
53
54
55
56
57
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
58
59
60
61
62
63
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

64
65
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

88
89
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
90
91
    .. automodule:: nifty

92
93
94
95
96
97
98
99
100
101
102
103
104
105
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
106

107
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
108

109
110
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
111

112
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
113

114
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
115

116
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
117

118
119
120
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
141
142
143
144

"""
from __future__ import division
import numpy as np
Marco Selig's avatar
Marco Selig committed
145
import pylab as pl
146

147
from nifty_paradict import space_paradict,\
148
    point_space_paradict
Ultimanet's avatar
Ultimanet committed
149

150
from keepers import about,\
151
152
153
    global_configuration as gc,\
    global_dependency_injector as gdi

Ultimanet's avatar
Ultimanet committed
154
from nifty_random import random
155
from nifty.nifty_mpi_data import distributed_data_object,\
156
    STRATEGIES as DISTRIBUTION_STRATEGIES
157

158
import nifty.nifty_utilities as utilities
Marco Selig's avatar
Marco Selig committed
159

160
POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Marco Selig's avatar
Marco Selig committed
161

Ultimanet's avatar
Ultimanet committed
162
163

class space(object):
Marco Selig's avatar
Marco Selig committed
164
    """
Ultimanet's avatar
Ultimanet committed
165
166
167
168
169
170
171
        ..     _______   ______    ____ __   _______   _______
        ..   /  _____/ /   _   | /   _   / /   ____/ /   __  /
        ..  /_____  / /  /_/  / /  /_/  / /  /____  /  /____/
        .. /_______/ /   ____/  \______|  \______/  \______/  class
        ..          /__/

        NIFTY base class for spaces and their discretizations.
Marco Selig's avatar
Marco Selig committed
172

Ultimanet's avatar
Ultimanet committed
173
174
175
        The base NIFTY space class is an abstract class from which other
        specific space subclasses, including those preimplemented in NIFTY
        (e.g. the regular grid class) must be derived.
Marco Selig's avatar
Marco Selig committed
176
177
178

        Parameters
        ----------
179
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
180
181
            Data type of the field values for a field defined on this space
            (default: numpy.float64).
182
        datamodel :
Marco Selig's avatar
Marco Selig committed
183
184
185

        See Also
        --------
Ultimanet's avatar
Ultimanet committed
186
187
188
189
190
191
192
193
        point_space :  A class for unstructured lists of numbers.
        rg_space : A class for regular cartesian grids in arbitrary dimensions.
        hp_space : A class for the HEALPix discretization of the sphere
            [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the sphere
            [#]_.
        lm_space : A class for spherical harmonic components.
        nested_space : A class for product spaces.
Marco Selig's avatar
Marco Selig committed
194

Ultimanet's avatar
Ultimanet committed
195
196
197
198
199
200
201
202
        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
Marco Selig's avatar
Marco Selig committed
203
204
205

        Attributes
        ----------
Ultimanet's avatar
Ultimanet committed
206
        para : {single object, list of objects}
207
208
209
            This is a freeform list of parameters that derivatives of the space
            class can use.
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
210
211
212
213
214
215
216
            Data type of the field values for a field defined on this space.
        discrete : bool
            Whether the space is inherently discrete (true) or a discretization
            of a continuous space (false).
        vol : numpy.ndarray
            An array of pixel volumes, only one component if the pixels all
            have the same volume.
Marco Selig's avatar
Marco Selig committed
217
    """
218

Ultima's avatar
Ultima committed
219
    def __init__(self):
Marco Selig's avatar
Marco Selig committed
220
        """
Ultimanet's avatar
Ultimanet committed
221
            Sets the attributes for a space class instance.
Marco Selig's avatar
Marco Selig committed
222
223
224

            Parameters
            ----------
225
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
226
227
                Data type of the field values for a field defined on this space
                (default: numpy.float64).
228
            datamodel :
Marco Selig's avatar
Marco Selig committed
229

Ultimanet's avatar
Ultimanet committed
230
231
232
            Returns
            -------
            None
Marco Selig's avatar
Marco Selig committed
233
        """
234
        self.paradict = space_paradict()
235

Ultimanet's avatar
Ultimanet committed
236
237
238
    @property
    def para(self):
        return self.paradict['default']
239

Ultimanet's avatar
Ultimanet committed
240
241
242
    @para.setter
    def para(self, x):
        self.paradict['default'] = x
Marco Selig's avatar
Marco Selig committed
243

244
    def _identifier(self):
Marco Selig's avatar
Marco Selig committed
245
        """
246
247
248
        _identiftier returns an object which contains all information needed
        to uniquely idetnify a space. It returns a (immutable) tuple which
        therefore can be compared.
249
        """
250
251
252
253
254
255
256
257
258
259
260
261
262
        return tuple(sorted(vars(self).items()))

    def __eq__(self, x):
        if isinstance(x, type(self)):
            return self._identifier() == x._identifier()
        else:
            return False

    def __ne__(self, x):
        return not self.__eq__(x)

    def __len__(self):
        return int(self.get_dim(split=False))
Marco Selig's avatar
Marco Selig committed
263

264
    def copy(self):
265
        return space(para=self.para,
266
                     dtype=self.dtype)
Marco Selig's avatar
Marco Selig committed
267

Ultimanet's avatar
Ultimanet committed
268
    def getitem(self, data, key):
269
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
270
            "ERROR: no generic instance method 'getitem'."))
Marco Selig's avatar
Marco Selig committed
271

Ultimanet's avatar
Ultimanet committed
272
    def setitem(self, data, key):
273
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
274
            "ERROR: no generic instance method 'getitem'."))
275

Ultimanet's avatar
Ultimanet committed
276
    def apply_scalar_function(self, x, function, inplace=False):
277
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
278
            "ERROR: no generic instance method 'apply_scalar_function'."))
Marco Selig's avatar
Marco Selig committed
279

Ultimanet's avatar
Ultimanet committed
280
    def unary_operation(self, x, op=None):
281
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
282
            "ERROR: no generic instance method 'unary_operation'."))
283

Ultimanet's avatar
Ultimanet committed
284
    def binary_operation(self, x, y, op=None):
285
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
286
            "ERROR: no generic instance method 'binary_operation'."))
Marco Selig's avatar
Marco Selig committed
287

288
    def get_shape(self):
289
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
290
            "ERROR: no generic instance method 'shape'."))
Marco Selig's avatar
Marco Selig committed
291

292
    def get_dim(self, split=False):
Marco Selig's avatar
Marco Selig committed
293
        """
Ultimanet's avatar
Ultimanet committed
294
            Computes the dimension of the space, i.e.\  the number of pixels.
Marco Selig's avatar
Marco Selig committed
295
296
297

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
298
299
300
            split : bool, *optional*
                Whether to return the dimension split up, i.e. the numbers of
                pixels in each direction, or not (default: False).
Marco Selig's avatar
Marco Selig committed
301

Ultimanet's avatar
Ultimanet committed
302
303
304
305
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
Marco Selig's avatar
Marco Selig committed
306
        """
307
        raise NotImplementedError(about._errors.cstring(
308
            "ERROR: no generic instance method 'dim'."))
Marco Selig's avatar
Marco Selig committed
309

310
    def get_dof(self):
Marco Selig's avatar
Marco Selig committed
311
        """
Ultimanet's avatar
Ultimanet committed
312
            Computes the number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
313
314
315

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
316
317
            dof : int
                Number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
318
        """
319
        raise NotImplementedError(about._errors.cstring(
320
            "ERROR: no generic instance method 'dof'."))
Marco Selig's avatar
Marco Selig committed
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    def cast(self, x, verbose=False):
        """
            Computes valid field values from a given object, trying
            to translate the given data into a valid form. Thereby it is as
            benevolent as possible.

            Parameters
            ----------
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.

            Returns
            -------
            x : numpy.ndarray, distributed_data_object
                Array containing the field values, which are compatible to the
                space.

            Other parameters
            ----------------
            verbose : bool, *optional*
                Whether the method should raise a warning if information is
                lost during casting (default: False).
        """
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'cast'."))
Marco Selig's avatar
Marco Selig committed
347

348
    # TODO: Move enforce power into power_indices class
349
    def enforce_power(self, spec, **kwargs):
Marco Selig's avatar
Marco Selig committed
350
        """
Ultimanet's avatar
Ultimanet committed
351
            Provides a valid power spectrum array from a given object.
Marco Selig's avatar
Marco Selig committed
352
353
354

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
355
356
357
358
            spec : {scalar, list, numpy.ndarray, nifty.field, function}
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.
Marco Selig's avatar
Marco Selig committed
359
360
361

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
362
363
364
365
366
367
368
369
370
371
372
373
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band.
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
374
375
                Flag specifying if the spectral binning is performed on
                logarithmic
Ultimanet's avatar
Ultimanet committed
376
377
378
379
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
380
381
                Number of used spectral bins; if given `log` is set to
                ``False``;
Ultimanet's avatar
Ultimanet committed
382
383
384
385
386
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
387
388
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
Ultimanet's avatar
Ultimanet committed
389
390
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Marco Selig's avatar
Marco Selig committed
391
392

        """
393
        raise NotImplementedError(about._errors.cstring(
394
            "ERROR: no generic instance method 'enforce_power'."))
Marco Selig's avatar
Marco Selig committed
395

396
    def check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
397
        """
398
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
399
400
401

            Parameters
            ----------
402
403
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
404
405
406

            Returns
            -------
407
408
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
409
        """
Ultima's avatar
Ultima committed
410
411
412
413
414
        if codomain is None:
            return False
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: no generic instance method 'check_codomain'."))
Marco Selig's avatar
Marco Selig committed
415

416
    def get_codomain(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
417
        """
418
419
420
            Generates a compatible codomain to which transformations are
            reasonable, usually either the position basis or the basis of
            harmonic eigenmodes.
Marco Selig's avatar
Marco Selig committed
421
422
423

            Parameters
            ----------
424
425
426
427
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
Ultimanet's avatar
Ultimanet committed
428
                (default: None).
429
430
431
432
            conest : list, *optional*
                List of nested spaces of the codomain (default: None).
            coorder : list, *optional*
                Permutation of the list of nested spaces (default: None).
Marco Selig's avatar
Marco Selig committed
433
434
435

            Returns
            -------
436
437
            codomain : nifty.space
                A compatible codomain.
Ultimanet's avatar
Ultimanet committed
438
        """
439
        raise NotImplementedError(about._errors.cstring(
440
            "ERROR: no generic instance method 'get_codomain'."))
Marco Selig's avatar
Marco Selig committed
441

442
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
443
        """
Ultimanet's avatar
Ultimanet committed
444
445
            Generates random field values according to the specifications given
            by the parameters.
Marco Selig's avatar
Marco Selig committed
446

Ultimanet's avatar
Ultimanet committed
447
448
449
450
451
452
453
            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
Marco Selig's avatar
Marco Selig committed
454
            random : string, *optional*
Ultimanet's avatar
Ultimanet committed
455
456
457
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
458
459

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
460
461
                - "gau" (normal distribution with zero-mean and a given
                    standard deviation or variance)
Marco Selig's avatar
Marco Selig committed
462
463
464
465
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
Ultimanet's avatar
Ultimanet committed
466
467
468
469
470
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
471
472
            spec : {scalar, list, numpy.ndarray, nifty.field, function},
                    *optional*
Ultimanet's avatar
Ultimanet committed
473
                Power spectrum (default: 1).
474
475
476
477
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
478
                Scale of each band (default: None).
479
            codomain : nifty.space, *optional*
Ultimanet's avatar
Ultimanet committed
480
                A compatible codomain with power indices (default: None).
481
            log : bool, *optional*
482
483
                Flag specifying if the spectral binning is performed on
                logarithmic
484
485
486
487
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
488
489
                Number of used spectral bins; if given `log` is set to
                ``False``;
490
491
492
493
494
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
495
496
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
497
498
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Ultimanet's avatar
Ultimanet committed
499
500
501
502
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
Marco Selig's avatar
Marco Selig committed
503
        """
504
505
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_random_values'."))
Marco Selig's avatar
Marco Selig committed
506

507
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
508
        """
509
510
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.
Marco Selig's avatar
Marco Selig committed
511
512
513

            Parameters
            ----------
514
515
516
517
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
Marco Selig's avatar
Marco Selig committed
518
519
520

            Returns
            -------
521
522
            y : numpy.ndarray
                Weighted array.
Marco Selig's avatar
Marco Selig committed
523
        """
524
        raise NotImplementedError(about._errors.cstring(
525
            "ERROR: no generic instance method 'calc_weight'."))
Marco Selig's avatar
Marco Selig committed
526

527
528
529
    def get_weight(self, power=1):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_weight'."))
Marco Selig's avatar
Marco Selig committed
530

Ultima's avatar
Ultima committed
531
532
533
534
    def calc_norm(self, x, q):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'norm'."))

535
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
536
        """
537
538
            Computes the discrete inner product of two given arrays of field
            values.
Marco Selig's avatar
Marco Selig committed
539
540
541

            Parameters
            ----------
542
543
544
545
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array
Marco Selig's avatar
Marco Selig committed
546
547
548

            Returns
            -------
549
550
            dot : scalar
                Inner product of the two arrays.
Ultimanet's avatar
Ultimanet committed
551
        """
552
        raise NotImplementedError(about._errors.cstring(
553
            "ERROR: no generic instance method 'dot'."))
Marco Selig's avatar
Marco Selig committed
554

555
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
556
        """
557
            Computes the transform of a given array of field values.
Marco Selig's avatar
Marco Selig committed
558

Ultimanet's avatar
Ultimanet committed
559
560
            Parameters
            ----------
561
562
563
564
565
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
                codomain space to which the transformation shall map
                (default: self).
Marco Selig's avatar
Marco Selig committed
566
567
568

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
569
570
            Tx : numpy.ndarray
                Transformed array
571

Ultimanet's avatar
Ultimanet committed
572
573
574
575
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations performed in specific transformations.
576
        """
577
578
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_transform'."))
Marco Selig's avatar
Marco Selig committed
579

580
    def calc_smooth(self, x, sigma=0, **kwargs):
Marco Selig's avatar
Marco Selig committed
581
        """
Ultimanet's avatar
Ultimanet committed
582
583
            Smoothes an array of field values by convolution with a Gaussian
            kernel.
Marco Selig's avatar
Marco Selig committed
584
585
586

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
587
588
589
590
591
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space (default: 0).
Marco Selig's avatar
Marco Selig committed
592
593
594

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
595
596
            Gx : numpy.ndarray
                Smoothed array.
Marco Selig's avatar
Marco Selig committed
597

Ultimanet's avatar
Ultimanet committed
598
599
600
601
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
602
        """
603
604
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_smooth'."))
Marco Selig's avatar
Marco Selig committed
605

606
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
607
        """
Ultimanet's avatar
Ultimanet committed
608
            Computes the power of an array of field values.
Marco Selig's avatar
Marco Selig committed
609
610
611

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
612
613
614
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.
Marco Selig's avatar
Marco Selig committed
615
616
617
618

            Returns
            -------
            spec : numpy.ndarray
Ultimanet's avatar
Ultimanet committed
619
                Power contained in the input array.
Marco Selig's avatar
Marco Selig committed
620
621
622

            Other parameters
            ----------------
Ultimanet's avatar
Ultimanet committed
623
624
625
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
626
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
627
628
629
630
                Scale corresponding to each band in the power spectrum
                (default: None).
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
631
632
633
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
634
635
                Flag specifying if the spectral binning is performed on
                logarithmic
636
637
638
639
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
640
641
                Number of used spectral bins; if given `log` is set to
                ``False``;
642
643
644
645
646
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
647
648
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
649
650
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
651

Marco Selig's avatar
Marco Selig committed
652
        """
653
654
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_power'."))
Marco Selig's avatar
Marco Selig committed
655

656
657
658
659
660
661
662
    def calc_real_Q(self, x):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_real_Q'."))

    def calc_bincount(self, x, weights=None, minlength=None):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_bincount'."))
Marco Selig's avatar
Marco Selig committed
663

664
    def get_plot(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
665
        """
Ultimanet's avatar
Ultimanet committed
666
667
            Creates a plot of field values according to the specifications
            given by the parameters.
668
669
670

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
            error : {float, numpy.ndarray, nifty.field}, *optional*
                Object indicating some confidence interval to be plotted
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
716
717
                Flag specifying if the spectral binning is performed on
                logarithmic
718
719
720
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
Ultimanet's avatar
Ultimanet committed
721
            nbin : integer, *optional*
722
723
                Number of used spectral bins; if given `log` is set to
                ``False``;
724
                integers below the minimum of 3 induce an automatic setting;
725
                by default no binning is done (default: None).
Ultimanet's avatar
Ultimanet committed
726
            binbounds : {list, array}, *optional*
727
728
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
729
730
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
Ultimanet's avatar
Ultimanet committed
731
732
733
734
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
735
736

        """
737
738
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_plot'."))
Marco Selig's avatar
Marco Selig committed
739

Ultimanet's avatar
Ultimanet committed
740
    def __repr__(self):
Ultima's avatar
Ultima committed
741
742
743
744
        string = ""
        string += str(type(self)) + "\n"
        string += "paradict: " + str(self.paradict) + "\n"
        return string
Marco Selig's avatar
Marco Selig committed
745

Ultimanet's avatar
Ultimanet committed
746
    def __str__(self):
Ultima's avatar
Ultima committed
747
        return self.__repr__()
Marco Selig's avatar
Marco Selig committed
748
749


Ultimanet's avatar
Ultimanet committed
750
class point_space(space):
Marco Selig's avatar
Marco Selig committed
751
    """
Ultimanet's avatar
Ultimanet committed
752
753
754
755
756
757
758
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/
Marco Selig's avatar
Marco Selig committed
759

Ultimanet's avatar
Ultimanet committed
760
        NIFTY subclass for unstructured spaces.
Marco Selig's avatar
Marco Selig committed
761

Ultimanet's avatar
Ultimanet committed
762
763
        Unstructured spaces are lists of values without any geometrical
        information.
Marco Selig's avatar
Marco Selig committed
764
765
766

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
767
768
        num : int
            Number of points.
769
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
770
            Data type of the field values (default: None).
Marco Selig's avatar
Marco Selig committed
771

Ultimanet's avatar
Ultimanet committed
772
        Attributes
Marco Selig's avatar
Marco Selig committed
773
        ----------
Ultimanet's avatar
Ultimanet committed
774
775
        para : numpy.ndarray
            Array containing the number of points.
776
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
777
778
779
780
781
782
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that a :py:class:`point_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`point_space`, which is always 1.
Marco Selig's avatar
Marco Selig committed
783
    """
784

785
786
    def __init__(self, num, dtype=np.dtype('float'), datamodel='fftw',
                 comm=gc['default_comm']):
Ultimanet's avatar
Ultimanet committed
787
788
        """
            Sets the attributes for a point_space class instance.
Marco Selig's avatar
Marco Selig committed
789

Ultimanet's avatar
Ultimanet committed
790
791
792
793
            Parameters
            ----------
            num : int
                Number of points.
794
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
795
                Data type of the field values (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
796

Ultimanet's avatar
Ultimanet committed
797
798
799
800
            Returns
            -------
            None.
        """
801
802
        self.paradict = point_space_paradict(num=num)

803
804
        # parse dtype
        dtype = np.dtype(dtype)
Ultima's avatar
Ultima committed
805
806
807
808
809
810
811
812
813
        if dtype not in [np.dtype('bool'),
                         np.dtype('int16'),
                         np.dtype('int32'),
                         np.dtype('int64'),
                         np.dtype('float32'),
                         np.dtype('float64'),
                         np.dtype('complex64'),
                         np.dtype('complex128')]:
            raise ValueError(about._errors.cstring(
814
                             "WARNING: incompatible dtype: " + str(dtype)))
Ultima's avatar
Ultima committed
815
        self.dtype = dtype
816
817

        if datamodel not in ['np'] + POINT_DISTRIBUTION_STRATEGIES:
Ultima's avatar
Ultima committed
818
            about._errors.cstring("WARNING: datamodel set to default.")
819
            self.datamodel = \
820
                gc['default_distribution_strategy']
821
822
        else:
            self.datamodel = datamodel
823

824
        self.comm = self._parse_comm(comm)
Ultimanet's avatar
Ultimanet committed
825
        self.discrete = True
826
        self.harmonic = False
827
        self.distances = (np.float(1),)
Marco Selig's avatar
Marco Selig committed
828

Ultimanet's avatar
Ultimanet committed
829
830
831
832
    @property
    def para(self):
        temp = np.array([self.paradict['num']], dtype=int)
        return temp
833

Ultimanet's avatar
Ultimanet committed
834
835
    @para.setter
    def para(self, x):
Ultima's avatar
Ultima committed
836
        self.paradict['num'] = x[0]
837

838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: x[1].__hash__() if x[0] == 'comm' else x)(ii)))
                for ii in vars(self).iteritems()
                ]
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

    def _parse_comm(self, comm):
        # check if comm is a string -> the name of comm is given
        # -> Extract it from the mpi_module
        if isinstance(comm, str):
            if gc.validQ('default_comm', comm):
                result_comm = getattr(gdi[gc['mpi_module']], comm)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: The given communicator-name is not supported."))
        # check if the given comm object is an instance of default Intracomm
        else:
            if isinstance(comm, gdi[gc['mpi_module']].Intracomm):
                result_comm = comm
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: The given comm object is not an instance of the " +
                    "default-MPI-module's Intracomm Class."))
        return result_comm

866
    def copy(self):
867
        return point_space(num=self.paradict['num'],
868
                           dtype=self.dtype,
869
870
                           datamodel=self.datamodel,
                           comm=self.comm)
871

Ultimanet's avatar
Ultimanet committed
872
873
    def getitem(self, data, key):
        return data[key]
Marco Selig's avatar
Marco Selig committed
874

Ultimanet's avatar
Ultimanet committed
875
    def setitem(self, data, update, key):
876
        data[key] = update
Marco Selig's avatar
Marco Selig committed
877

Ultimanet's avatar
Ultimanet committed
878
    def apply_scalar_function(self, x, function, inplace=False):
879
        if self.datamodel == 'np':
880
            if not inplace:
881
                try:
882
883
884
885
886
887
888
889
890
                    return function(x)
                except:
                    return np.vectorize(function)(x)
            else:
                try:
                    x[:] = function(x)
                except:
                    x[:] = np.vectorize(function)(x)
                return x
891
892

        elif self.datamodel in POINT_DISTRIBUTION_STRATEGIES:
893
            return x.apply_scalar_function(function, inplace=inplace)
Ultimanet's avatar
Ultimanet committed
894
        else:
895
896
897
            raise NotImplementedError(about._errors.cstring(
                "ERROR: function is not implemented for given datamodel."))

Ultimanet's avatar
Ultimanet committed
898
899
900
901
    def unary_operation(self, x, op='None', **kwargs):
        """
        x must be a numpy array which is compatible with the space!
        Valid operations are
902

Ultimanet's avatar
Ultimanet committed
903
        """
904
        if self.datamodel == 'np':
905
906
907
908
            def _argmin(z, **kwargs):
                ind = np.argmin(z, **kwargs)
                if np.isscalar(ind):
                    ind = np.unravel_index(ind, z.shape, order='C')
909
                    if(len(ind) == 1):
910
                        return ind[0]
911
912
                return ind

913
914
915
916
            def _argmax(z, **kwargs):
                ind = np.argmax(z, **kwargs)
                if np.isscalar(ind):
                    ind = np.unravel_index(ind, z.shape, order='C')
917
                    if(len(ind) == 1):
918
                        return ind[0]
919
920
                return ind

Ultima's avatar
Ultima committed
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
            translation = {'pos': lambda y: getattr(y, '__pos__')(),
                           'neg': lambda y: getattr(y, '__neg__')(),
                           'abs': lambda y: getattr(y, '__abs__')(),
                           'real': lambda y: getattr(y, 'real'),
                           'imag': lambda y: getattr(y, 'imag'),
                           'nanmin': np.nanmin,
                           'amin': np.amin,
                           'nanmax': np.nanmax,
                           'amax': np.amax,
                           'median': np.median,
                           'mean': np.mean,
                           'std': np.std,
                           'var': np.var,
                           'argmin': _argmin,
                           'argmin_flat': np.argmin,
                           'argmax': _argmax,
                           'argmax_flat': np.argmax,
                           'conjugate': np.conjugate,
                           'sum': np.sum,
                           'prod': np.prod,
                           'unique': np.unique,
                           'copy': np.copy,
                           'copy_empty': np.empty_like,
                           'isnan': np.isnan,
                           'isinf': np.isinf,
                           'isfinite': np.isfinite,
                           'nan_to_num': np.nan_to_num,
                           'all': np.all,
                           'any': np.any,
                           'None': lambda y: y}
951
952

        elif self.datamodel in POINT_DISTRIBUTION_STRATEGIES:
Ultima's avatar
Ultima committed
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
            translation = {'pos': lambda y: getattr(y, '__pos__')(),
                           'neg': lambda y: getattr(y, '__neg__')(),
                           'abs': lambda y: getattr(y, '__abs__')(),
                           'real': lambda y: getattr(y, 'real'),
                           'imag': lambda y: getattr(y, 'imag'),
                           'nanmin': lambda y: getattr(y, 'nanmin')(),
                           'amin': lambda y: getattr(y, 'amin')(),
                           'nanmax': lambda y: getattr(y, 'nanmax')(),
                           'amax': lambda y: getattr(y, 'amax')(),
                           'median': lambda y: getattr(y, 'median')(),
                           'mean': lambda y: getattr(y, 'mean')(),
                           'std': lambda y: getattr(y, 'std')(),
                           'var': lambda y: getattr(y, 'var')(),
                           'argmin': lambda y: getattr(y, 'argmin_nonflat')(),
                           'argmin_flat': lambda y: getattr(y, 'argmin')(),
                           'argmax': lambda y: getattr(y, 'argmax_nonflat')(),
                           'argmax_flat': lambda y: getattr(y, 'argmax')(),
                           'conjugate': lambda y: getattr(y, 'conjugate')(),
                           'sum': lambda y: getattr(y, 'sum')(),
                           'prod': lambda y: getattr(y, 'prod')(),
                           'unique': lambda y: getattr(y, 'unique')(),
                           'copy': lambda y: getattr(y, 'copy')(),
                           'copy_empty': lambda y: getattr(y, 'copy_empty')(),
                           'isnan': lambda y: getattr(y, 'isnan')(),
                           'isinf': lambda y: getattr(y, 'isinf')(),
                           'isfinite': lambda y: getattr(y, 'isfinite')(),
                           'nan_to_num': lambda y: getattr(y, 'nan_to_num')(),
                           'all': lambda y: getattr(y, 'all')(),
                           'any': lambda y: getattr(y, 'any')(),
                           'None': lambda y: y}
983
984
985
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: function is not implemented for given datamodel."))
Marco Selig's avatar
Marco Selig committed
986

987
988
        return translation[op](x, **kwargs)

Ultimanet's avatar
Ultimanet committed
989
    def binary_operation(self, x, y, op='None', cast=0):
990

Ultima's avatar
Ultima committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
        translation = {'add': lambda z: getattr(z, '__add__'),
                       'radd': lambda z: getattr(z, '__radd__'),
                       'iadd': lambda z: getattr(z, '__iadd__'),
                       'sub': lambda z: getattr(z, '__sub__'),
                       'rsub': lambda z: getattr(z, '__rsub__'),
                       'isub': lambda z: getattr(z, '__isub__'),
                       'mul': lambda z: getattr(z, '__mul__'),
                       'rmul': lambda z: getattr(z, '__rmul__'),
                       'imul': lambda z: getattr(z, '__imul__'),
                       'div': lambda z: getattr(z, '__div__'),
                       'rdiv': lambda z: getattr(z, '__rdiv__'),
                       'idiv': lambda z: getattr(z, '__idiv__'),
                       'pow': lambda z: getattr(z, '__pow__'),
                       'rpow': lambda z: getattr(z, '__rpow__'),
                       'ipow': lambda z: getattr(z, '__ipow__'),
                       'ne': lambda z: getattr(z, '__ne__'),
                       'lt': lambda z: getattr(z, '__lt__'),
                       'le': lambda z: getattr(z, '__le__'),
                       'eq': lambda z: getattr(z, '__eq__'),
                       'ge': lambda z: getattr(z, '__ge__'),
                       'gt': lambda z: getattr(z, '__gt__'),
                       'None': lambda z: lambda u: u}
1013

Ultimanet's avatar
Ultimanet committed
1014
1015
1016
        if (cast & 1) != 0:
            x = self.cast(x)
        if (cast & 2) != 0:
1017
1018
            y = self.cast(y)

Ultimanet's avatar
Ultimanet committed
1019
        return translation[op](x)(y)
Marco Selig's avatar
Marco Selig committed
1020

1021
    def get_shape(self):
1022
        return (self.paradict['num'],)
Marco Selig's avatar
Marco Selig committed
1023

Ultima's avatar
Ultima committed
1024
    def get_dim(self):
Ultimanet's avatar
Ultimanet committed
1025
1026
        """
            Computes the dimension of the space, i.e.\  the number of points.
Marco Selig's avatar
Marco Selig committed
1027

Ultimanet's avatar
Ultimanet committed
1028
1029
1030
1031
1032
            Parameters
            ----------
            split : bool, *optional*
                Whether to return the dimension as an array with one component
                or as a scalar (default: False).
Marco Selig's avatar
Marco Selig committed
1033

Ultimanet's avatar
Ultimanet committed
1034
1035
1036
1037
1038
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
        """
Ultima's avatar
Ultima committed
1039
        return np.prod(self.get_shape())
Marco Selig's avatar
Marco Selig committed
1040

1041
    def get_dof(self, split=False):
Ultimanet's avatar
Ultimanet committed
1042
1043
1044
1045
        """
            Computes the number of degrees of freedom of the space, i.e./  the
            number of points for real-valued fields and twice that number for
            complex-valued fields.
Marco Selig's avatar
Marco Selig committed
1046

Ultimanet's avatar
Ultimanet committed
1047
1048
1049
1050
1051
            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.
        """
Ultima's avatar
Ultima committed
1052
1053
1054
1055
        if split:
            dof = self.get_shape()
            if issubclass(self.dtype.type, np.complexfloating):
                dof = tuple(np.array(dof)*2)
1056
        else:
Ultima's avatar
Ultima committed
1057
1058
1059
1060
            dof = self.get_dim()
            if issubclass(self.dtype.type, np.complexfloating):
                dof = dof * 2
        return dof
1061
1062
1063
1064

    def get_vol(self, split=False):
        if split:
            return self.distances
Ultimanet's avatar
Ultimanet committed
1065
        else:
1066
            return np.prod(self.distances)
Marco Selig's avatar
Marco Selig committed
1067

1068
    def get_meta_volume(self, split=False):
Marco Selig's avatar
Marco Selig committed
1069
        """
1070
            Calculates the meta volumes.
Ultimanet's avatar
Ultimanet committed
1071

1072
1073
1074
1075
1076
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions. In the case of an :py:class:`rg_space`, the
            meta volumes are simply the pixel volumes.
Marco Selig's avatar
Marco Selig committed
1077
1078
1079

            Parameters
            ----------
1080
1081
1082
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each pixel (default: False).
Marco Selig's avatar
Marco Selig committed
1083
1084
1085

            Returns
            -------
1086
1087
            mol : {numpy.ndarray, float}
                Meta volume of the pixels or the complete space.
Ultimanet's avatar
Ultimanet committed
1088
        """
1089
1090
1091
1092
1093
        if not split:
            return self.get_dim() * self.get_vol()
        else:
            mol = self.cast(1, dtype=np.dtype('float'))
            return self.calc_weight(mol, power=1)
1094

Ultima's avatar
Ultima committed
1095
    def cast(self, x=None, dtype=None, **kwargs):
1096
        if dtype is not None:
1097
            dtype = np.dtype(dtype)
1098

Ultima's avatar
Ultima committed
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        # If x is a field, extract the data and do a recursive call
        if isinstance(x, field):
            # Check if the domain matches
            if self != x.domain:
                about.warnings.cflush(
                    "WARNING: Getting data from foreign domain!")
            # Extract the data, whatever it is, and cast it again
            return self.cast(x.val,
                             dtype=dtype,
                             **kwargs)

1110
        if self.datamodel in POINT_DISTRIBUTION_STRATEGIES:
Ultima's avatar
Ultima committed
1111
1112
            return self._cast_to_d2o(x=x,
                                     dtype=dtype,
1113
                                     **kwargs)
1114
        elif self.datamodel == 'np':
Ultima's avatar
Ultima committed
1115
1116
            return self._cast_to_np(x=x,
                                    dtype=dtype,
1117
                                    **kwargs)
1118
1119
1120
1121
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: function is not implemented for given datamodel."))

Ultima's avatar
Ultima committed
1122
    def _cast_to_d2o(self, x, dtype=None, **kwargs):
1123
1124
        """
            Computes valid field values from a given object, trying
1125
1126
            to translate the given data into a valid form. Thereby it is as
            benevolent as possible.
1127
1128
1129
1130
1131
1132
1133
1134