numpy_do.py 3.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
20
21
# Data object module for NIFTy that uses simple numpy ndarrays.

import numpy as np
Philipp Arras's avatar
Philipp Arras committed
22
from numpy import empty, empty_like, exp, full, log
23
from numpy import ndarray as data_object
Philipp Arras's avatar
Philipp Arras committed
24
25
from numpy import ones, sqrt, tanh, vdot, zeros

Martin Reinecke's avatar
Martin Reinecke committed
26
27
from .random import Random

Martin Reinecke's avatar
Martin Reinecke committed
28
29
30
31
32
33
34
__all__ = ["ntask", "rank", "master", "local_shape", "data_object", "full",
           "empty", "zeros", "ones", "empty_like", "vdot", "exp",
           "log", "tanh", "sqrt", "from_object", "from_random",
           "local_data", "ibegin", "ibegin_from_shape", "np_allreduce_sum",
           "np_allreduce_min", "np_allreduce_max",
           "distaxis", "from_local_data", "from_global_data", "to_global_data",
           "redistribute", "default_distaxis", "is_numpy",
Martin Reinecke's avatar
Martin Reinecke committed
35
36
           "lock", "locked", "uniform_full", "to_global_data_rw",
           "ensure_not_distributed", "ensure_default_distributed"]
Martin Reinecke's avatar
Martin Reinecke committed
37

Martin Reinecke's avatar
Martin Reinecke committed
38
39
40
41
ntask = 1
rank = 0
master = True

42

Martin Reinecke's avatar
Martin Reinecke committed
43
44
45
46
def is_numpy():
    return True


Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    res = np.array(object, dtype=dtype, copy=copy)
    if set_locked:
        lock(res)
    return res
Martin Reinecke's avatar
Martin Reinecke committed
61
62
63
64
65


def from_random(random_type, shape, dtype=np.float64, **kwargs):
    generator_function = getattr(Random, random_type)
    return generator_function(dtype=dtype, shape=shape, **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
66

Martin Reinecke's avatar
Martin Reinecke committed
67

Martin Reinecke's avatar
Martin Reinecke committed
68
69
70
71
def local_data(arr):
    return arr


72
73
74
75
def ibegin_from_shape(glob_shape, distaxis=-1):
    return (0,)*len(glob_shape)


Martin Reinecke's avatar
Martin Reinecke committed
76
77
78
79
80
81
82
83
def ibegin(arr):
    return (0,)*arr.ndim


def np_allreduce_sum(arr):
    return arr


84
85
86
87
def np_allreduce_min(arr):
    return arr


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
88
89
90
91
def np_allreduce_max(arr):
    return arr


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
92
def distaxis(arr):
Martin Reinecke's avatar
Martin Reinecke committed
93
    return -1
Martin Reinecke's avatar
Martin Reinecke committed
94
95


Martin Reinecke's avatar
Martin Reinecke committed
96
def from_local_data(shape, arr, distaxis=-1):
Martin Reinecke's avatar
Martin Reinecke committed
97
    if tuple(shape) != arr.shape:
Martin Reinecke's avatar
Martin Reinecke committed
98
99
100
101
        raise ValueError
    return arr


102
def from_global_data(arr, sum_up=False, distaxis=-1):
Martin Reinecke's avatar
Martin Reinecke committed
103
104
105
    return arr


Martin Reinecke's avatar
Martin Reinecke committed
106
def to_global_data(arr):
Martin Reinecke's avatar
Martin Reinecke committed
107
108
109
    return arr


110
111
112
113
def to_global_data_rw(arr):
    return arr.copy()


Martin Reinecke's avatar
Martin Reinecke committed
114
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
115
116
117
    return arr


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
118
def default_distaxis():
Martin Reinecke's avatar
Martin Reinecke committed
119
120
121
    return -1


122
def local_shape(glob_shape, distaxis=-1):
Martin Reinecke's avatar
Martin Reinecke committed
123
    return glob_shape
124
125
126
127
128
129
130
131


def lock(arr):
    arr.flags.writeable = False


def locked(arr):
    return not arr.flags.writeable
Martin Reinecke's avatar
Martin Reinecke committed
132
133
134
135


def uniform_full(shape, fill_value, dtype=None, distaxis=-1):
    return np.broadcast_to(fill_value, shape)
Martin Reinecke's avatar
Martin Reinecke committed
136
137
138
139
140
141
142
143


def ensure_not_distributed(arr, axes):
    return arr, arr


def ensure_default_distributed(arr):
    return arr