distributed_do.py 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20 21 22

import sys

23 24
import numpy as np
from mpi4py import MPI
Philipp Arras's avatar
Philipp Arras committed
25 26 27

from ..compat import *
from .random import Random
28

Martin Reinecke's avatar
Martin Reinecke committed
29 30 31 32 33 34 35
__all__ = ["ntask", "rank", "master", "local_shape", "data_object", "full",
           "empty", "zeros", "ones", "empty_like", "vdot", "exp",
           "log", "tanh", "sqrt", "from_object", "from_random",
           "local_data", "ibegin", "ibegin_from_shape", "np_allreduce_sum",
           "np_allreduce_min", "np_allreduce_max",
           "distaxis", "from_local_data", "from_global_data", "to_global_data",
           "redistribute", "default_distaxis", "is_numpy",
Martin Reinecke's avatar
Martin Reinecke committed
36 37
           "lock", "locked", "uniform_full", "transpose", "to_global_data_rw",
           "ensure_not_distributed", "ensure_default_distributed"]
Martin Reinecke's avatar
Martin Reinecke committed
38

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
39 40 41
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
42
master = (rank == 0)
43 44


Martin Reinecke's avatar
Martin Reinecke committed
45 46 47 48
def is_numpy():
    return False


Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
49
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
50
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
51

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
52 53

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
54 55
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
56
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
57
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
58 59
    return lo, hi

60

61
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
62
    if len(shape) == 0 or distaxis == -1:
63
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
64 65
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
66 67
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
68

69 70
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
71
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
72
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
73
            distaxis = -1
Martin Reinecke's avatar
Martin Reinecke committed
74 75
            if not isinstance(data, np.ndarray):
                data = np.full((), data)
76 77
        self._distaxis = distaxis
        self._data = data
Martin Reinecke's avatar
Martin Reinecke committed
78 79
        if local_shape(self._shape, self._distaxis) != self._data.shape:
            raise ValueError("shape mismatch")
80

81 82 83
    def copy(self):
        return data_object(self._shape, self._data.copy(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
#     def _sanity_checks(self):
#         # check whether the distaxis is consistent
#         if self._distaxis < -1 or self._distaxis >= len(self._shape):
#             raise ValueError
#         itmp = np.array(self._distaxis)
#         otmp = np.empty(ntask, dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         if np.any(otmp != self._distaxis):
#             raise ValueError
#         # check whether the global shape is consistent
#         itmp = np.array(self._shape)
#         otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         for i in range(ntask):
#             if np.any(otmp[i, :] != self._shape):
#                 raise ValueError
#         # check shape of local data
#         if self._distaxis < 0:
#             if self._data.shape != self._shape:
#                 raise ValueError
#         else:
#             itmp = np.array(self._shape)
#             itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
#                                               ntask, rank)
#             if np.any(self._data.shape != itmp):
#                 raise ValueError
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
125
        return data_object(self._shape, self._data.real, self._distaxis)
126 127 128

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
129
        return data_object(self._shape, self._data.imag, self._distaxis)
130

Martin Reinecke's avatar
Martin Reinecke committed
131 132 133 134 135 136
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
137
    def _contraction_helper(self, op, mpiop, axis):
138
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
139
            if len(axis) == len(self._data.shape):
140 141
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
142
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
143
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
144
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
145 146
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
147
            return res2[()]
148 149

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
150 151
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
152
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
153
            return from_global_data(res2, distaxis=0)
154
        else:
Martin Reinecke's avatar
Martin Reinecke committed
155
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
156 157
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
158
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
159
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
160
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
161
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
162 163
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
164 165
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
166 167 168

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
169

170 171 172
    def prod(self, axis=None):
        return self._contraction_helper("prod", MPI.PROD, axis)

173 174
#    def min(self, axis=None):
#        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
175

176 177
#    def max(self, axis=None):
#        return self._contraction_helper("max", MPI.MAX, axis)
178

179 180 181 182 183 184
    def mean(self, axis=None):
        if axis is None:
            sz = self.size
        else:
            sz = reduce(lambda x, y: x*y, [self.shape[i] for i in axis])
        return self.sum(axis)/sz
Martin Reinecke's avatar
Martin Reinecke committed
185

186 187
    def std(self, axis=None):
        return np.sqrt(self.var(axis))
Martin Reinecke's avatar
Martin Reinecke committed
188

Martin Reinecke's avatar
Martin Reinecke committed
189
    # FIXME: to be improved!
190 191 192
    def var(self, axis=None):
        if axis is not None and len(axis) != len(self.shape):
            raise ValueError("functionality not yet supported")
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
193 194
        return (abs(self-self.mean())**2).mean()

195
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
196
        a = self
197
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
198
            b = other
199 200 201 202
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
203 204
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
205 206 207 208 209
        elif np.isscalar(other):
            a = a._data
            b = other
        else:
            return NotImplemented
210 211

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
212 213 214 215
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
216 217

    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
218
        return data_object(self._shape, -self._data, self._distaxis)
219 220

    def __abs__(self):
221
        return data_object(self._shape, abs(self._data), self._distaxis)
222 223

    def all(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
224
        return self.sum() == self.size
225 226

    def any(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
227
        return self.sum() != 0
228

Martin Reinecke's avatar
fixes  
Martin Reinecke committed
229 230
    def fill(self, value):
        self._data.fill(value)
231

232

233 234 235 236 237 238 239 240 241 242 243 244 245 246
for op in ["__add__", "__radd__", "__iadd__",
           "__sub__", "__rsub__", "__isub__",
           "__mul__", "__rmul__", "__imul__",
           "__div__", "__rdiv__", "__idiv__",
           "__truediv__", "__rtruediv__", "__itruediv__",
           "__floordiv__", "__rfloordiv__", "__ifloordiv__",
           "__pow__", "__rpow__", "__ipow__",
           "__lt__", "__le__", "__gt__", "__ge__", "__eq__", "__ne__"]:
    def func(op):
        def func2(self, other):
            return self._binary_helper(other, op=op)
        return func2
    setattr(data_object, op, func(op))

Martin Reinecke's avatar
Martin Reinecke committed
247

Martin Reinecke's avatar
Martin Reinecke committed
248
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
249 250
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
251 252


Martin Reinecke's avatar
Martin Reinecke committed
253 254 255 256 257 258
def uniform_full(shape, fill_value, dtype=None, distaxis=0):
    return data_object(
        shape, np.broadcast_to(fill_value, local_shape(shape, distaxis)),
        distaxis)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
259
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
260 261
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
262 263


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
264
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
265 266
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
267 268


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
269
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
270 271
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
272 273 274 275 276 277 278


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
279
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
280
    if a._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
281
        return tmp[()]
Martin Reinecke's avatar
Martin Reinecke committed
282 283
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
284
    return res[()]
285 286 287


def _math_helper(x, function, out):
288
    function = getattr(np, function)
289 290 291 292
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
293
        return data_object(x.shape, function(x._data), x._distaxis)
294 295


296
_current_module = sys.modules[__name__]
Martin Reinecke's avatar
Martin Reinecke committed
297

298
for f in ["sqrt", "exp", "log", "tanh", "conjugate"]:
299 300 301 302 303
    def func(f):
        def func2(x, out=None):
            return _math_helper(x, f, out)
        return func2
    setattr(_current_module, f, func(f))
304 305


Martin Reinecke's avatar
Martin Reinecke committed
306 307 308 309 310 311 312 313 314 315 316 317
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    data = np.array(object._data, dtype=dtype, copy=copy)
    if set_locked:
Martin Reinecke's avatar
fix  
Martin Reinecke committed
318
        data.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
319
    return data_object(object._shape, data, distaxis=object._distaxis)
320 321


Martin Reinecke's avatar
Martin Reinecke committed
322 323
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
324 325 326
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
327
def from_random(random_type, shape, dtype=np.float64, **kwargs):
328
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
329
    if len(shape) == 0:
Martin Reinecke's avatar
Martin Reinecke committed
330 331 332
        ldat = generator_function(dtype=dtype, shape=shape, **kwargs)
        ldat = _comm.bcast(ldat)
        return from_local_data(shape, ldat, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
333 334 335 336 337 338 339
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
340

Martin Reinecke's avatar
Martin Reinecke committed
341

Martin Reinecke's avatar
Martin Reinecke committed
342 343 344 345
def local_data(arr):
    return arr._data


346 347
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
348
    if distaxis < 0:
349 350 351 352 353
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
354 355
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
356
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
357
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
358 359


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
360 361
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
362
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
363
    return res
Martin Reinecke's avatar
Martin Reinecke committed
364 365


366 367 368 369 370 371
def np_allreduce_min(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MIN)
    return res


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
372 373 374 375 376 377
def np_allreduce_max(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MAX)
    return res


Martin Reinecke's avatar
Martin Reinecke committed
378 379 380 381
def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
382
def from_local_data(shape, arr, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
383 384 385
    return data_object(shape, arr, distaxis)


386 387 388
def from_global_data(arr, sum_up=False, distaxis=0):
    if sum_up:
        arr = np_allreduce_sum(arr)
Martin Reinecke's avatar
Martin Reinecke committed
389
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
390
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
391
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
392
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
393
    sl[distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
394 395 396
    return data_object(arr.shape, arr[sl], distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
397 398
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
399 400 401 402 403
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


404 405 406 407 408 409 410
def to_global_data_rw(arr):
    if arr._distaxis == -1:
        return arr._data.copy()
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
411
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
412 413 414
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
415
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
416 417 418 419 420 421
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
422
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
423 424
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
425
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
426
                break
Martin Reinecke's avatar
Martin Reinecke committed
427

Martin Reinecke's avatar
Martin Reinecke committed
428
    if arr._distaxis == -1:  # all data available, just pick the proper subset
429
        return from_global_data(arr._data, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
430
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
431
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
432 433
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
434
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
435 436 437 438
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
439
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
440 441
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
442 443 444 445
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
446
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
447
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
448

Martin Reinecke's avatar
Martin Reinecke committed
449
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
450
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
451
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
452 453 454
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
455
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
456 457 458 459 460 461 462 463 464 465 466 467
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
468
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
469 470 471 472 473 474
            ssz[i] = ssz0*(hi-lo)
            sbuf[ofs:ofs+ssz[i]] = arr._data[sslice].flat
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
475 476
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
477 478
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
479
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
480
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
481 482 483 484
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
Martin Reinecke's avatar
Martin Reinecke committed
485
        arrnew = np.empty(local_shape(arr.shape, dist), dtype=arr.dtype)
Martin Reinecke's avatar
Martin Reinecke committed
486 487 488 489
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
490
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
491
            sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
492
            arrnew[rslice].flat = rbuf[ofs:ofs+sz]
Martin Reinecke's avatar
Martin Reinecke committed
493
            ofs += sz
Martin Reinecke's avatar
Martin Reinecke committed
494
        arrnew = from_local_data(arr.shape, arrnew, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
495
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
496 497


Martin Reinecke's avatar
Martin Reinecke committed
498 499
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
500
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
501 502 503 504 505 506 507 508 509 510 511
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
512
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
513 514 515 516 517 518 519 520 521 522
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
523
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
524 525
    arrnew = np.empty((sz2, arr.shape[0]), dtype=arr.dtype)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
526 527 528
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
529
        arrnew[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
530
        ofs += sz
531
    return from_local_data((arr.shape[1], arr.shape[0]), arrnew, 0)
Martin Reinecke's avatar
Martin Reinecke committed
532 533


Martin Reinecke's avatar
Martin Reinecke committed
534 535
def default_distaxis():
    return 0
536 537 538 539 540 541 542 543


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable
Martin Reinecke's avatar
Martin Reinecke committed
544 545 546 547 548 549 550 551 552 553 554 555


def ensure_not_distributed(arr, axes):
    if arr._distaxis in axes:
        arr = redistribute(arr, nodist=axes)
    return arr, arr._data


def ensure_default_distributed(arr):
    if arr._distaxis != 0:
        arr = redistribute(arr, dist=0)
    return arr