extra.py 5.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20

21
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
22
23

from ..compat import *
Martin Reinecke's avatar
Martin Reinecke committed
24
from ..field import Field
Martin Reinecke's avatar
Martin Reinecke committed
25
from ..linearization import Linearization
Philipp Arras's avatar
Philipp Arras committed
26
from ..sugar import from_random
27

Martin Reinecke's avatar
Martin Reinecke committed
28
__all__ = ["consistency_check", "check_value_gradient_consistency",
Martin Reinecke's avatar
Martin Reinecke committed
29
           "check_value_gradient_metric_consistency"]
30

Philipp Arras's avatar
Philipp Arras committed
31

Martin Reinecke's avatar
Martin Reinecke committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def _assert_allclose(f1, f2, atol, rtol):
    if isinstance(f1, Field):
        return np.testing.assert_allclose(f1.local_data, f2.local_data,
                                          atol=atol, rtol=rtol)
    for key, val in f1.items():
        _assert_allclose(val, f2[key], atol=atol, rtol=rtol)


def _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.ADJOINT_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    f1 = from_random("normal", op.domain, dtype=domain_dtype)
    f2 = from_random("normal", op.target, dtype=target_dtype)
    res1 = f1.vdot(op.adjoint_times(f2))
    res2 = op.times(f1).vdot(f2)
    np.testing.assert_allclose(res1, res2, atol=atol, rtol=rtol)


def _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.INVERSE_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    foo = from_random("normal", op.target, dtype=target_dtype)
    res = op(op.inverse_times(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)

    foo = from_random("normal", op.domain, dtype=domain_dtype)
    res = op.inverse_times(op(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)


def _full_implementation(op, domain_dtype, target_dtype, atol, rtol):
    _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol)
    _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol)


def consistency_check(op, domain_dtype=np.float64, target_dtype=np.float64,
                      atol=0, rtol=1e-7):
    _full_implementation(op, domain_dtype, target_dtype, atol, rtol)
    _full_implementation(op.adjoint, target_dtype, domain_dtype, atol, rtol)
    _full_implementation(op.inverse, target_dtype, domain_dtype, atol, rtol)
    _full_implementation(op.adjoint.inverse, domain_dtype, target_dtype, atol,
                         rtol)


Martin Reinecke's avatar
Martin Reinecke committed
78
def _get_acceptable_location(op, loc, lin):
Martin Reinecke's avatar
Martin Reinecke committed
79
    if not np.isfinite(lin.val.sum()):
Martin Reinecke's avatar
Martin Reinecke committed
80
81
82
83
        raise ValueError('Initial value must be finite')
    dir = from_random("normal", loc.domain)
    dirder = lin.jac(dir)
    if dirder.norm() == 0:
Martin Reinecke's avatar
Martin Reinecke committed
84
        dir = dir * (lin.val.norm()*1e-5)
Martin Reinecke's avatar
Martin Reinecke committed
85
    else:
Martin Reinecke's avatar
Martin Reinecke committed
86
        dir = dir * (lin.val.norm()*1e-5/dirder.norm())
Martin Reinecke's avatar
Martin Reinecke committed
87
88
89
90
    # Find a step length that leads to a "reasonable" location
    for i in range(50):
        try:
            loc2 = loc+dir
91
            lin2 = op(Linearization.make_var(loc2, lin.want_metric))
Martin Reinecke's avatar
Martin Reinecke committed
92
93
94
95
96
97
98
99
100
            if np.isfinite(lin2.val.sum()) and abs(lin2.val.sum()) < 1e20:
                break
        except FloatingPointError:
            pass
        dir = dir*0.5
    else:
        raise ValueError("could not find a reasonable initial step")
    return loc2, lin2

Martin Reinecke's avatar
Martin Reinecke committed
101

Martin Reinecke's avatar
Martin Reinecke committed
102
def _check_consistency(op, loc, tol, ntries, do_metric):
Martin Reinecke's avatar
Martin Reinecke committed
103
    for _ in range(ntries):
104
        lin = op(Linearization.make_var(loc, do_metric))
Martin Reinecke's avatar
Martin Reinecke committed
105
        loc2, lin2 = _get_acceptable_location(op, loc, lin)
Martin Reinecke's avatar
Martin Reinecke committed
106
        dir = loc2-loc
Martin Reinecke's avatar
Martin Reinecke committed
107
108
109
110
        locnext = loc2
        dirnorm = dir.norm()
        for i in range(50):
            locmid = loc + 0.5*dir
111
            linmid = op(Linearization.make_var(locmid, do_metric))
Martin Reinecke's avatar
Martin Reinecke committed
112
113
            dirder = linmid.jac(dir)
            numgrad = (lin2.val-lin.val)
Martin Reinecke's avatar
Martin Reinecke committed
114
            xtol = tol * dirder.norm() / np.sqrt(dirder.size)
Martin Reinecke's avatar
Martin Reinecke committed
115
116
            cond = (abs(numgrad-dirder) <= xtol).all()
            if do_metric:
Martin Reinecke's avatar
Martin Reinecke committed
117
118
                dgrad = linmid.metric(dir)
                dgrad2 = (lin2.gradient-lin.gradient)
Martin Reinecke's avatar
Martin Reinecke committed
119
120
                cond = cond and (abs(dgrad-dgrad2) <= xtol).all()
            if cond:
Martin Reinecke's avatar
Martin Reinecke committed
121
122
123
                break
            dir = dir*0.5
            dirnorm *= 0.5
Martin Reinecke's avatar
Martin Reinecke committed
124
            loc2, lin2 = locmid, linmid
Martin Reinecke's avatar
Martin Reinecke committed
125
126
127
        else:
            raise ValueError("gradient and value seem inconsistent")
        loc = locnext
Martin Reinecke's avatar
Martin Reinecke committed
128
129


Martin Reinecke's avatar
Martin Reinecke committed
130
131
132
133
def check_value_gradient_consistency(op, loc, tol=1e-8, ntries=100):
    _check_consistency(op, loc, tol, ntries, False)


Martin Reinecke's avatar
Martin Reinecke committed
134
def check_value_gradient_metric_consistency(op, loc, tol=1e-8, ntries=100):
Martin Reinecke's avatar
Martin Reinecke committed
135
    _check_consistency(op, loc, tol, ntries, True)