correlated_fields.py 11.3 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22 23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31 32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34 35
from ..sugar import from_global_data, full, makeDomain

Philipp Arras's avatar
Philipp Arras committed
36

37 38
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
39 40 41
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
42 43
    return logmean, logsig

44

45 46 47
def _lognormal_moment_matching(mean, sig, key):
    key = str(key)
    logmean, logsig = _lognormal_moments(mean, sig)
Philipp Arras's avatar
Philipp Arras committed
48 49
    return _normal(logmean, logsig, key).exp()

50

Philipp Arras's avatar
Philipp Arras committed
51 52 53 54 55
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Frank's avatar
Philipp Frank committed
56
class _SlopeRemover(EndomorphicOperator):
57
    def __init__(self, domain, logkl):
Philipp Frank's avatar
Philipp Frank committed
58
        self._domain = makeDomain(domain)
59
        self._sc = logkl/float(logkl[-1])
Philipp Arras's avatar
Philipp Arras committed
60

Philipp Frank's avatar
Philipp Frank committed
61
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
62

63 64
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
65 66
        x = x.to_global_data()
        if mode == self.TIMES:
67
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
68
        else:
69
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
70 71
            res += x
            res[-1] -= (x*self._sc).sum()
72
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
73

74 75

def _make_slope_Operator(smooth, loglogavgslope):
Philipp Frank's avatar
Philipp Frank committed
76 77 78 79 80
    tg = smooth.target
    logkl = _log_k_lengths(tg[0])
    assert logkl.shape[0] == tg[0].shape[0] - 1
    logkl -= logkl[0]
    logkl = np.insert(logkl, 0, 0)
81
    noslope = _SlopeRemover(tg, logkl) @ smooth
Philipp Frank's avatar
Philipp Frank committed
82

Philipp Frank's avatar
Philipp Frank committed
83
    _t = VdotOperator(from_global_data(tg, logkl)).adjoint
Philipp Frank's avatar
Philipp Frank committed
84
    return _t @ loglogavgslope + noslope
Philipp Arras's avatar
Philipp Arras committed
85

86

Philipp Arras's avatar
Philipp Arras committed
87 88 89
def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])

90

Philipp Arras's avatar
Philipp Arras committed
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
        logk_lengths = _log_k_lengths(self._target[0])
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
            res[0] = 0
            res[1] = 0
            res[2:] = np.cumsum(x[1])
            res[2:] = (res[2:] + res[1:-1])/2*self._logvol + x[0]
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
            x[2:] *= self._logvol/2.
119 120
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


class CorrelatedFieldMaker:
    def __init__(self):
        self._amplitudes = []

    def add_fluctuations_from_ops(self, target, fluctuations, flexibility,
                                  asperity, loglogavgslope, key):
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
        dt = twolog._logvol
        sc = np.zeros(twolog.domain.shape)
        sc[0] = sc[1] = np.sqrt(dt)
        sc = from_global_data(twolog.domain, sc)
        expander = VdotOperator(sc).adjoint
        sigmasq = expander @ flexibility

        dist = np.zeros(twolog.domain.shape)
        dist[0] += 1.
        dist = from_global_data(twolog.domain, dist)
        scale = VdotOperator(dist).adjoint @ asperity

        shift = np.ones(scale.target.shape)
        shift[0] = dt**2/12.
        shift = from_global_data(scale.target, shift)
        scale = sigmasq*(Adder(shift) @ scale).sqrt()

        smooth = twolog @ (scale*ducktape(scale.target, None, key))
192
        smoothslope = _make_slope_Operator(smooth, loglogavgslope)
Philipp Arras's avatar
Philipp Arras committed
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
        ampl = adder @ ((expander @ fluctuations)*normal_ampl)

        self._amplitudes.append(ampl)

    def add_fluctuations(self, target, fluctuations_mean, fluctuations_stddev,
                         flexibility_mean, flexibility_stddev, asperity_mean,
                         asperity_stddev, loglogavgslope_mean,
                         loglogavgslope_stddev, prefix):
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
234
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                        prefix + 'loglogavgslope')
        self.add_fluctuations_from_ops(target, fluct, flex, asp, avgsl,
                                       prefix + 'spectrum')

    def finalize_from_op(self, zeromode):
        raise NotImplementedError

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
                 prefix,
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
            offset = float(offset)
        hspace = makeDomain(
            [dd.target[0].harmonic_partner for dd in self._amplitudes])

        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ azm

        ht = HarmonicTransformOperator(hspace, space=0)
        pd = PowerDistributor(hspace, self._amplitudes[0].target[0], 0)
        for i in range(1, len(self._amplitudes)):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht
            pd = pd @ PowerDistributor(
                pd.domain, self._amplitudes[i].target[0], space=i)

        spaces = tuple(range(len(self._amplitudes)))
        a = ContractionOperator(pd.domain,
                                spaces[1:]).adjoint(self._amplitudes[0])
        for i in range(1, len(self._amplitudes)):
            a = a*(ContractionOperator(pd.domain, spaces[:i] + spaces[
                (i + 1):]).adjoint(self._amplitudes[i]))

        A = pd @ a
        return ht(azm*A*ducktape(hspace, None, prefix + 'xi'))

    @property
    def amplitudes(self):
        return self._amplitudes
288

289 290
    def effective_total_fluctuation(self,
                                    fluctuations_means,
291
                                    fluctuations_stddevs,
292
                                    nsamples=100):
293
        namps = len(fluctuations_means)
294 295 296
        xis = np.random.normal(size=namps*nsamples).reshape((namps, nsamples))

        q = np.ones(nsamples)
297 298 299 300
        for i in range(len(fluctuations_means)):
            m, sig = _lognormal_moments(fluctuations_means[i],
                                        fluctuations_stddevs[i])
            f = np.exp(m + sig*xis[i])
301 302
            q *= (1. + f**2)
        q = np.sqrt(q - 1.)
303
        return np.mean(q), np.std(q)