dof_distributor.py 6.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Martin Reinecke's avatar
Martin Reinecke committed
19
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
20
from .linear_operator import LinearOperator
21
from ..utilities import infer_space
Martin Reinecke's avatar
Martin Reinecke committed
22
23
24
from ..field import Field
from ..domain_tuple import DomainTuple
from .. import dobj
Martin Reinecke's avatar
Martin Reinecke committed
25
from ..domains.dof_space import DOFSpace
Martin Reinecke's avatar
Martin Reinecke committed
26
27


Martin Reinecke's avatar
Martin Reinecke committed
28
class DOFDistributor(LinearOperator):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
29
30
31
32
33
34
    """Operator which distributes actual degrees of freedom (dof) according to
    some distribution scheme into a higher dimensional space. This distribution
    scheme is defined by the dofdex, a degree of freedom index, which
    associates the entries within the operators domain to locations in its
    target. This operator's domain is a DOFSpace, which is defined according to
    the distribution scheme.
35
36
37
38

    Parameters
    ----------
    dofdex: Field of integers
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
39
40
41
42
43
        An integer Field on exactly one Space establishing the association
        between the locations in the operators target and the underlying
        degrees of freedom in its domain.
        It has to start at 0 and it increases monotonicly, no empty bins are
        allowed.
44
    target: Domain, tuple of Domain, or DomainTuple, optional
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
45
46
        The target of the operator. If not specified, the domain of the dofdex
        is used.
47
48
49
50
    space: int, optional:
       The index of the sub-domain on which the operator acts.
       Can be omitted if `target` only has one sub-domain.
    """
Martin Reinecke's avatar
Martin Reinecke committed
51

Martin Reinecke's avatar
Martin Reinecke committed
52
53
    def __init__(self, dofdex, target=None, space=None):
        super(DOFDistributor, self).__init__()
Martin Reinecke's avatar
Martin Reinecke committed
54

Martin Reinecke's avatar
Martin Reinecke committed
55
56
57
58
59
        if target is None:
            target = dofdex.domain
        self._target = DomainTuple.make(target)
        space = infer_space(self._target, space)
        partner = self._target[space]
Martin Reinecke's avatar
Martin Reinecke committed
60
61
        if not isinstance(dofdex, Field):
            raise TypeError("dofdex must be a Field")
Martin Reinecke's avatar
Martin Reinecke committed
62
63
64
        if not len(dofdex.domain) == 1:
            raise ValueError("dofdex must live on exactly one Space")
        if not np.issubdtype(dofdex.dtype, np.integer):
Martin Reinecke's avatar
Martin Reinecke committed
65
            raise TypeError("dofdex must contain integer numbers")
Martin Reinecke's avatar
Martin Reinecke committed
66
        if partner != dofdex.domain[0]:
Martin Reinecke's avatar
Martin Reinecke committed
67
68
69
            raise ValueError("incorrect dofdex domain")

        nbin = dofdex.max()
Martin Reinecke's avatar
Martin Reinecke committed
70
        if partner.scalar_dvol is not None:
Martin Reinecke's avatar
Martin Reinecke committed
71
            wgt = np.bincount(dofdex.local_data.ravel(), minlength=nbin)
Martin Reinecke's avatar
Martin Reinecke committed
72
            wgt = wgt*partner.scalar_dvol
Martin Reinecke's avatar
Martin Reinecke committed
73
        else:
Martin Reinecke's avatar
Martin Reinecke committed
74
            dvol = dobj.local_data(partner.dvol)
Martin Reinecke's avatar
Martin Reinecke committed
75
            wgt = np.bincount(dofdex.local_data.ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
76
77
78
79
80
81
82
83
84
                              minlength=nbin, weights=dvol)
        # The explicit conversion to float64 is necessary because bincount
        # sometimes returns its result as an integer array, even when
        # floating-point weights are present ...
        wgt = wgt.astype(np.float64, copy=False)
        wgt = dobj.np_allreduce_sum(wgt)
        if (wgt == 0).any():
            raise ValueError("empty bins detected")

Martin Reinecke's avatar
Martin Reinecke committed
85
86
87
        self._init2(dofdex.val, space, DOFSpace(wgt))

    def _init2(self, dofdex, space, other_space):
Martin Reinecke's avatar
Martin Reinecke committed
88
        self._space = space
Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
        dom = list(self._target)
        dom[self._space] = other_space
        self._domain = DomainTuple.make(dom)
Martin Reinecke's avatar
Martin Reinecke committed
92

Martin Reinecke's avatar
Martin Reinecke committed
93
94
        if dobj.default_distaxis() in self._domain.axes[self._space]:
            dofdex = dobj.local_data(dofdex)
Martin Reinecke's avatar
Martin Reinecke committed
95
        else:  # dofdex must be available fully on every task
Martin Reinecke's avatar
Martin Reinecke committed
96
            dofdex = dobj.to_global_data(dofdex)
Martin Reinecke's avatar
Martin Reinecke committed
97
        self._dofdex = dofdex.ravel()
Martin Reinecke's avatar
Martin Reinecke committed
98
99
100
        firstaxis = self._target.axes[self._space][0]
        lastaxis = self._target.axes[self._space][-1]
        arrshape = dobj.local_shape(self._target.shape, 0)
Martin Reinecke's avatar
Martin Reinecke committed
101
102
        presize = np.prod(arrshape[0:firstaxis], dtype=np.int)
        postsize = np.prod(arrshape[lastaxis+1:], dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
103
        self._hshape = (presize, self._domain[self._space].shape[0], postsize)
Martin Reinecke's avatar
Martin Reinecke committed
104
105
        self._pshape = (presize, self._dofdex.size, postsize)

Martin Reinecke's avatar
Martin Reinecke committed
106
    def _adjoint_times(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
107
        arr = x.local_data
Martin Reinecke's avatar
Martin Reinecke committed
108
109
110
111
        arr = arr.reshape(self._pshape)
        oarr = np.zeros(self._hshape, dtype=x.dtype)
        np.add.at(oarr, (slice(None), self._dofdex, slice(None)), arr)
        if dobj.distaxis(x.val) in x.domain.axes[self._space]:
Martin Reinecke's avatar
Martin Reinecke committed
112
            oarr = dobj.np_allreduce_sum(oarr).reshape(self._domain.shape)
113
            res = Field.from_global_data(self._domain, oarr)
Martin Reinecke's avatar
Martin Reinecke committed
114
        else:
Martin Reinecke's avatar
Martin Reinecke committed
115
            oarr = oarr.reshape(dobj.local_shape(self._domain.shape,
Martin Reinecke's avatar
Martin Reinecke committed
116
                                                 dobj.distaxis(x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
117
118
            res = Field(self._domain,
                        dobj.from_local_data(self._domain.shape, oarr,
Martin Reinecke's avatar
Martin Reinecke committed
119
                                             dobj.default_distaxis()))
120
        return res
Martin Reinecke's avatar
Martin Reinecke committed
121

Martin Reinecke's avatar
Martin Reinecke committed
122
    def _times(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
123
        if dobj.distaxis(x.val) in x.domain.axes[self._space]:
124
            arr = x.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
125
        else:
Martin Reinecke's avatar
Martin Reinecke committed
126
            arr = x.local_data
Martin Reinecke's avatar
Martin Reinecke committed
127
        arr = arr.reshape(self._hshape)
Martin Reinecke's avatar
Martin Reinecke committed
128
129
130
131
        oarr = np.empty(self._pshape, dtype=x.dtype)
        oarr[()] = arr[(slice(None), self._dofdex, slice(None))]
        return Field.from_local_data(
            self._target, oarr.reshape(self._target.local_shape))
Martin Reinecke's avatar
Martin Reinecke committed
132

Martin Reinecke's avatar
Martin Reinecke committed
133
134
    def apply(self, x, mode):
        self._check_input(x, mode)
Martin Reinecke's avatar
Martin Reinecke committed
135
        return self._times(x) if mode == self.TIMES else self._adjoint_times(x)
Martin Reinecke's avatar
Martin Reinecke committed
136

Martin Reinecke's avatar
Martin Reinecke committed
137
138
139
140
141
142
143
    @property
    def domain(self):
        return self._domain

    @property
    def target(self):
        return self._target
Martin Reinecke's avatar
Martin Reinecke committed
144
145
146
147

    @property
    def capability(self):
        return self.TIMES | self.ADJOINT_TIMES