correlated_fields.py 11.8 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19 20
import numpy as np
from numpy.testing import assert_allclose
21

Philipp Arras's avatar
Philipp Arras committed
22
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
23 24
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
Philipp Arras's avatar
Philipp Arras committed
25
from ..extra import check_jacobian_consistency, consistency_check
26
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
27
from ..multi_domain import MultiDomain
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.adder import Adder
29
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
31
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
32
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
34 35
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
from ..operators.value_inserter import ValueInserter
from ..sugar import from_global_data, from_random, full, makeDomain


def _lognormal_moment_matching(mean, sig, key):
    mean, sig, key = float(mean), float(sig), str(key)
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
    return _normal(logmean, logsig, key).exp()


def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Frank's avatar
Philipp Frank committed
53 54 55 56
class _SlopeRemover(EndomorphicOperator):
    def __init__(self,domain,logkl):
        self._domain = makeDomain(domain)
        self._sc = logkl / float(logkl[-1])
Philipp Arras's avatar
Philipp Arras committed
57

Philipp Frank's avatar
Philipp Frank committed
58
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
59

Philipp Frank's avatar
Philipp Frank committed
60 61 62 63 64 65
    def apply(self,x,mode):
        self._check_input(x,mode)
        x = x.to_global_data()
        if mode == self.TIMES:
            res = x - x[-1] * self._sc
        else:
Philipp Frank's avatar
Philipp Frank committed
66
            res = np.zeros(x.shape,dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
67 68 69 70 71 72 73 74 75 76 77
            res += x
            res[-1] -= (x*self._sc).sum()
        return from_global_data(self._tgt(mode),res)

def _make_slope_Operator(smooth,loglogavgslope):
    tg = smooth.target
    logkl = _log_k_lengths(tg[0])
    assert logkl.shape[0] == tg[0].shape[0] - 1
    logkl -= logkl[0]
    logkl = np.insert(logkl, 0, 0)
    noslope = _SlopeRemover(tg,logkl) @ smooth
Philipp Frank's avatar
Philipp Frank committed
78 79 80
    # FIXME Move to tests
    consistency_check(_SlopeRemover(tg,logkl))

Philipp Frank's avatar
Philipp Frank committed
81
    _t = VdotOperator(from_global_data(tg, logkl)).adjoint
Philipp Frank's avatar
Philipp Frank committed
82
    return _t @ loglogavgslope + noslope
Philipp Arras's avatar
Philipp Arras committed
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])

class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
        logk_lengths = _log_k_lengths(self._target[0])
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
            res[0] = 0
            res[1] = 0
            res[2:] = np.cumsum(x[1])
            res[2:] = (res[2:] + res[1:-1])/2*self._logvol + x[0]
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
            x[2:] *= self._logvol/2.
115 116
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
117 118 119 120 121 122 123 124 125 126 127 128 129
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        # TODO Does not work on sphere yet
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)
Philipp Arras's avatar
Philipp Arras committed
130 131
        # FIXME Move to tests
        consistency_check(self._specsum)
Philipp Arras's avatar
Philipp Arras committed
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


class CorrelatedFieldMaker:
    def __init__(self):
        self._amplitudes = []

    def add_fluctuations_from_ops(self, target, fluctuations, flexibility,
                                  asperity, loglogavgslope, key):
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
        dt = twolog._logvol
        sc = np.zeros(twolog.domain.shape)
        sc[0] = sc[1] = np.sqrt(dt)
        sc = from_global_data(twolog.domain, sc)
        expander = VdotOperator(sc).adjoint
        sigmasq = expander @ flexibility

        dist = np.zeros(twolog.domain.shape)
        dist[0] += 1.
        dist = from_global_data(twolog.domain, dist)
        scale = VdotOperator(dist).adjoint @ asperity

        shift = np.ones(scale.target.shape)
        shift[0] = dt**2/12.
        shift = from_global_data(scale.target, shift)
        scale = sigmasq*(Adder(shift) @ scale).sqrt()

        smooth = twolog @ (scale*ducktape(scale.target, None, key))
Philipp Frank's avatar
Philipp Frank committed
191
        smoothslope = _make_slope_Operator(smooth,loglogavgslope)
Philipp Frank's avatar
Philipp Frank committed
192
        #smoothslope = smooth
Philipp Frank's avatar
Philipp Frank committed
193
        
Philipp Arras's avatar
Philipp Arras committed
194 195 196
        # move to tests
        assert_allclose(
            smooth(from_random('normal', smooth.domain)).val[0:2], 0)
Philipp Arras's avatar
Philipp Arras committed
197
        consistency_check(twolog)
Philipp Arras's avatar
Philipp Arras committed
198 199
        check_jacobian_consistency(smooth, from_random('normal',
                                                       smooth.domain))
Philipp Arras's avatar
Philipp Arras committed
200 201
        check_jacobian_consistency(smoothslope,
                                   from_random('normal', smoothslope.domain))
Philipp Arras's avatar
Philipp Arras committed
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        # end move to tests

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
        ampl = adder @ ((expander @ fluctuations)*normal_ampl)

        # Move to tests
        # FIXME This test fails but it is not relevant for the final result
        # assert_allclose(
        #     normal_ampl(from_random('normal', normal_ampl.domain)).val[0], 1)
        assert_allclose(ampl(from_random('normal', ampl.domain)).val[0], vol)
Philipp Arras's avatar
Philipp Arras committed
219 220
        op = _Normalization(target)
        check_jacobian_consistency(op, from_random('normal', op.domain))
Philipp Arras's avatar
Philipp Arras committed
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        # End move to tests

        self._amplitudes.append(ampl)

    def add_fluctuations(self, target, fluctuations_mean, fluctuations_stddev,
                         flexibility_mean, flexibility_stddev, asperity_mean,
                         asperity_stddev, loglogavgslope_mean,
                         loglogavgslope_stddev, prefix):
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
253
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
                        prefix + 'loglogavgslope')
        self.add_fluctuations_from_ops(target, fluct, flex, asp, avgsl,
                                       prefix + 'spectrum')

    def finalize_from_op(self, zeromode):
        raise NotImplementedError

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
                 prefix,
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
            offset = float(offset)
        hspace = makeDomain(
            [dd.target[0].harmonic_partner for dd in self._amplitudes])

        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ azm

        ht = HarmonicTransformOperator(hspace, space=0)
        pd = PowerDistributor(hspace, self._amplitudes[0].target[0], 0)
        for i in range(1, len(self._amplitudes)):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht
            pd = pd @ PowerDistributor(
                pd.domain, self._amplitudes[i].target[0], space=i)

        spaces = tuple(range(len(self._amplitudes)))
        a = ContractionOperator(pd.domain,
                                spaces[1:]).adjoint(self._amplitudes[0])
        for i in range(1, len(self._amplitudes)):
            a = a*(ContractionOperator(pd.domain, spaces[:i] + spaces[
                (i + 1):]).adjoint(self._amplitudes[i]))

        A = pd @ a
        return ht(azm*A*ducktape(hspace, None, prefix + 'xi'))

    @property
    def amplitudes(self):
        return self._amplitudes