bernoulli_demo.py 3.34 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Jakob Knollmueller's avatar
Jakob Knollmueller committed
19 20 21 22 23
import nifty5 as ift
import numpy as np


if __name__ == '__main__':
Philipp Arras's avatar
Philipp Arras committed
24
    # FIXME ABOUT THIS CODE
Jakob Knollmueller's avatar
Jakob Knollmueller committed
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    np.random.seed(41)

    # Set up the position space of the signal
    #
    # # One dimensional regular grid with uniform exposure
    # position_space = ift.RGSpace(1024)
    # exposure = np.ones(position_space.shape)

    # Two-dimensional regular grid with inhomogeneous exposure
    position_space = ift.RGSpace([512, 512])

    # # Sphere with with uniform exposure
    # position_space = ift.HPSpace(128)
    # exposure = ift.Field.full(position_space, 1.)

    # Defining harmonic space and transform
    harmonic_space = position_space.get_default_codomain()
    HT = ift.HarmonicTransformOperator(harmonic_space, position_space)

    domain = ift.MultiDomain.make({'xi': harmonic_space})
    position = ift.from_random('normal', domain)

    # Define power spectrum and amplitudes
    def sqrtpspec(k):
        return 1. / (20. + k**2)

    p_space = ift.PowerSpace(harmonic_space)
    pd = ift.PowerDistributor(harmonic_space, p_space)
    a = ift.PS_field(p_space, sqrtpspec)
    A = pd(a)

    # Set up a sky model
    xi = ift.Variable(position)['xi']
    logsky_h = xi * A
    logsky = HT(logsky_h)
    sky = ift.PointwisePositiveTanh(logsky)

    GR = ift.GeometryRemover(position_space)
    # Set up instrumental response
    R = GR

    # Generate mock data
    d_space = R.target[0]
    p = R(sky)
    mock_position = ift.from_random('normal', p.position.domain)
    pp = p.at(mock_position).value
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
71
    data = np.random.binomial(1, pp.to_global_data().astype(np.float64))
Jakob Knollmueller's avatar
Jakob Knollmueller committed
72 73 74 75 76 77 78 79 80 81 82 83 84
    data = ift.Field.from_global_data(d_space, data)

    # Compute likelihood and Hamiltonian
    position = ift.from_random('normal', p.position.domain)
    likelihood = ift.BernoulliEnergy(p, data)
    ic_cg = ift.GradientNormController(iteration_limit=50)
    ic_newton = ift.GradientNormController(name='Newton', iteration_limit=30,
                                           tol_abs_gradnorm=1e-3)
    minimizer = ift.RelaxedNewton(ic_newton)
    ic_sampling = ift.GradientNormController(iteration_limit=100)

    # Minimize the Hamiltonian
    H = ift.Hamiltonian(likelihood, ic_sampling)
85
    H = H.make_invertible(ic_cg)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
86 87
    # minimizer = ift.SteepestDescent(ic_newton)
    H, convergence = minimizer(H)
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
88

Jakob Knollmueller's avatar
Jakob Knollmueller committed
89 90
    reconstruction = sky.at(H.position).value

Martin Reinecke's avatar
Martin Reinecke committed
91 92 93 94
    ift.plot(reconstruction, title='reconstruction')
    ift.plot(GR.adjoint_times(data), title='data')
    ift.plot(sky.at(mock_position).value, title='truth')
    ift.plot_finish(nx=3, xsize=16, ysize=5, title="results", name="bernoulli.png")