plot.py 12.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Martin Reinecke's avatar
Martin Reinecke committed
19
20
import os

21
22
import numpy as np

Martin Reinecke's avatar
fix    
Martin Reinecke committed
23
24
25
26
27
28
29
from . import dobj
from .compat import *
from .domains.gl_space import GLSpace
from .domains.hp_space import HPSpace
from .domains.power_space import PowerSpace
from .domains.rg_space import RGSpace
from .field import Field
30

Martin Reinecke's avatar
Martin Reinecke committed
31
32
33
34
35
36
37
38
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
39
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
40

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
41

Martin Reinecke's avatar
Martin Reinecke committed
42
43
44
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
45
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
46
    xc, yc = (xsize-1)*0.5, (ysize-1)*0.5
Martin Reinecke's avatar
Martin Reinecke committed
47
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
Martin Reinecke's avatar
Martin Reinecke committed
48
    u, v = 2*(u-xc)/(xc/1.02), (v-yc)/(yc/1.02)
Martin Reinecke's avatar
Martin Reinecke committed
49
50
51
52
53
54
55
56
57

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
58

Martin Reinecke's avatar
Martin Reinecke committed
59
60
def _find_closest(A, target):
    # A must be sorted
Martin Reinecke's avatar
Martin Reinecke committed
61
62
    idx = np.clip(A.searchsorted(target), 1, len(A)-1)
    idx -= target - A[idx-1] < A[idx] - target
Martin Reinecke's avatar
Martin Reinecke committed
63
64
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
65

Martin Reinecke's avatar
Martin Reinecke committed
66
def _makeplot(name):
67
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
68
    if dobj.rank != 0:
69
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
70
        return
Martin Reinecke's avatar
Martin Reinecke committed
71
72
    if name is None:
        plt.show()
73
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
74
75
        return
    extension = os.path.splitext(name)[1]
76
    if extension in (".pdf", ".png", ".svg"):
Martin Reinecke's avatar
Martin Reinecke committed
77
78
79
80
81
        plt.savefig(name)
        plt.close()
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
82

Martin Reinecke's avatar
Martin Reinecke committed
83
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
84
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
85
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
86
87
88
89
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
90
91
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
92

Martin Reinecke's avatar
Martin Reinecke committed
93
94
95
96
97
98
99
100
101
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
148
149
150

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
151
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
152
153
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
154
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
155

Martin Reinecke's avatar
Martin Reinecke committed
156

Martin Reinecke's avatar
Martin Reinecke committed
157
def _plot(f, ax, **kwargs):
158
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
159
    _register_cmaps()
160
161
162
    if isinstance(f, Field):
        f = [f]
    if not isinstance(f, list):
Martin Reinecke's avatar
Martin Reinecke committed
163
        raise TypeError("incorrect data type")
164
165
166
167
168
169
170
171
172
173
174
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
            if len(dom) != 1:
                raise ValueError("input field must have exactly one domain")
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
            if not (isinstance(dom[0], PowerSpace) or
175
                    (isinstance(dom[0], RGSpace) and len(dom[0].shape) == 1)):
176
                raise ValueError("PowerSpace or 1D RGSpace required")
Martin Reinecke's avatar
Martin Reinecke committed
177

clienhar's avatar
clienhar committed
178
    label = kwargs.pop("label", None)
179
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
180
        label = [label] * len(f)
Martin Reinecke's avatar
Martin Reinecke committed
181

Martin Reinecke's avatar
Martin Reinecke committed
182
    linewidth = kwargs.pop("linewidth", 1.)
Philipp Arras's avatar
Philipp Arras committed
183
    if not isinstance(linewidth, list):
Martin Reinecke's avatar
Martin Reinecke committed
184
        linewidth = [linewidth] * len(f)
Philipp Arras's avatar
Philipp Arras committed
185

clienhar's avatar
clienhar committed
186
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
187
    if not isinstance(alpha, list):
Martin Reinecke's avatar
Martin Reinecke committed
188
        alpha = [alpha] * len(f)
Philipp Arras's avatar
Philipp Arras committed
189

Philipp Arras's avatar
Philipp Arras committed
190
191
    foo = kwargs.pop("norm", None)
    norm = {} if foo is None else {'norm': foo}
192

193
    dom = dom[0]
clienhar's avatar
clienhar committed
194
195
196
197
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
Martin Reinecke's avatar
Martin Reinecke committed
198
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
199
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
200
201
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
202
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
203
            for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
204
                ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
205
206
                plt.plot(xcoord, ycoord, label=label[i],
                         linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
207
            _limit_xy(**kwargs)
208
209
            if label != ([None]*len(f)):
                plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
210
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
211
        elif len(dom.shape) == 2:
Martin Reinecke's avatar
Martin Reinecke committed
212
213
            nx, ny = dom.shape
            dx, dy = dom.distances
Martin Reinecke's avatar
Martin Reinecke committed
214
215
216
217
            im = ax.imshow(
                f[0].to_global_data().T, extent=[0, nx*dx, 0, ny*dy],
                vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                cmap=cmap, origin="lower", **norm)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
218
219
220
221
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
222
            plt.colorbar(im)
Martin Reinecke's avatar
Martin Reinecke committed
223
            _limit_xy(**kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
224
225
226
227
            return
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
Philipp Arras's avatar
Philipp Arras committed
228
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
229
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
230
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
231
232
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
233
        _limit_xy(**kwargs)
234
235
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
236
        return
Martin Reinecke's avatar
Martin Reinecke committed
237
    elif isinstance(dom, (HPSpace, GLSpace)):
Martin Reinecke's avatar
Martin Reinecke committed
238
239
240
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
Martin Reinecke's avatar
Martin Reinecke committed
241
242
243
244
245
246
247
248
249
250
251
252
253
        if isinstance(dom, HPSpace):
            ptg = np.empty((phi.size, 2), dtype=np.float64)
            ptg[:, 0] = theta
            ptg[:, 1] = phi
            base = pyHealpix.Healpix_Base(int(np.sqrt(f[0].size//12)), "RING")
            res[mask] = f[0].to_global_data()[base.ang2pix(ptg)]
        else:
            ra = np.linspace(0, 2*np.pi, dom.nlon+1)
            dec = pyHealpix.GL_thetas(dom.nlat)
            ilat = _find_closest(dec, theta)
            ilon = _find_closest(ra, phi)
            ilon = np.where(ilon == dom.nlon, 0, ilon)
            res[mask] = f[0].to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
254
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
255
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
256
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
257
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
258
259
260
        return

    raise ValueError("Field type not(yet) supported")
Martin Reinecke's avatar
Martin Reinecke committed
261

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
class Plot(object):
    def __init__(self):
        self._plots = []
        self._kwargs = []

    def add(self, f, **kwargs):
        """Add a figure to the current list of plots.

        Notes
        -----
        After doing one or more calls `plot()`, one also needs to call
        `plot_finish()` to output the result.

        Parameters
        ----------
        f: Field, or list of Field objects
            If `f` is a single Field, it must live over a single `RGSpace`,
            `PowerSpace`, `HPSpace`, `GLSPace`.
            If it is a list, all list members must be Fields living over the
            same one-dimensional `RGSpace` or `PowerSpace`.
        title: string
            title of the plot
        xlabel: string
            label for the x axis
        ylabel: string
            label for the y axis
        [xyz]min, [xyz]max: float
            limits for the values to plot
        colormap: string
            color map to use for the plot (if it is a 2D plot)
        linewidth: float or list of floats
            line width
        label: string of list of strings
            annotation string
        alpha: float or list of floats
            transparency value
        """
        self._plots.append(f)
        self._kwargs.append(kwargs)

    def output(self, **kwargs):
        """Plot the accumulated list of figures.

        Parameters
        ----------
        title: string
            title of the full plot
        nx, ny: integer (default: square root of the numer of plots, rounded up)
            number of subplots to use in x- and y-direction
        xsize, ysize: float (default: 6)
            dimensions of the full plot in inches
        name: string (default: "")
            if left empty, the plot will be shown on the screen,
            otherwise it will be written to a file with the given name.
            Supported extensions: .png and .pdf
        """
        import matplotlib.pyplot as plt
        nplot = len(self._plots)
        fig = plt.figure()
        if "title" in kwargs:
            plt.suptitle(kwargs.pop("title"))
        nx = kwargs.pop("nx", int(np.ceil(np.sqrt(nplot))))
        ny = kwargs.pop("ny", int(np.ceil(np.sqrt(nplot))))
        if nx*ny < nplot:
            raise ValueError(
                'Figure dimensions not sufficient for number of plots. '
                'Available plot slots: {}, number of plots: {}'
                .format(nx*ny, nplot))
        xsize = kwargs.pop("xsize", 6)
        ysize = kwargs.pop("ysize", 6)
        fig.set_size_inches(xsize, ysize)
        for i in range(nplot):
            ax = fig.add_subplot(ny, nx, i+1)
            _plot(self._plots[i], ax, **self._kwargs[i])
        fig.tight_layout()
        _makeplot(kwargs.pop("name", None))