extra.py 4.98 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

import numpy as np
Philipp Arras's avatar
Philipp Arras committed
20

Martin Reinecke's avatar
fix  
Martin Reinecke committed
21 22 23 24
from .compat import *
from .field import Field
from .linearization import Linearization
from .sugar import from_random
25

Martin Reinecke's avatar
Martin Reinecke committed
26
__all__ = ["consistency_check", "check_value_gradient_consistency",
Martin Reinecke's avatar
Martin Reinecke committed
27
           "check_value_gradient_metric_consistency"]
28

Philipp Arras's avatar
Philipp Arras committed
29

Martin Reinecke's avatar
Martin Reinecke committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
def _assert_allclose(f1, f2, atol, rtol):
    if isinstance(f1, Field):
        return np.testing.assert_allclose(f1.local_data, f2.local_data,
                                          atol=atol, rtol=rtol)
    for key, val in f1.items():
        _assert_allclose(val, f2[key], atol=atol, rtol=rtol)


def _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.ADJOINT_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    f1 = from_random("normal", op.domain, dtype=domain_dtype)
    f2 = from_random("normal", op.target, dtype=target_dtype)
    res1 = f1.vdot(op.adjoint_times(f2))
    res2 = op.times(f1).vdot(f2)
    np.testing.assert_allclose(res1, res2, atol=atol, rtol=rtol)


def _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.INVERSE_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    foo = from_random("normal", op.target, dtype=target_dtype)
    res = op(op.inverse_times(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)

    foo = from_random("normal", op.domain, dtype=domain_dtype)
    res = op.inverse_times(op(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)


def _full_implementation(op, domain_dtype, target_dtype, atol, rtol):
    _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol)
    _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol)


def consistency_check(op, domain_dtype=np.float64, target_dtype=np.float64,
                      atol=0, rtol=1e-7):
    _full_implementation(op, domain_dtype, target_dtype, atol, rtol)
    _full_implementation(op.adjoint, target_dtype, domain_dtype, atol, rtol)
    _full_implementation(op.inverse, target_dtype, domain_dtype, atol, rtol)
    _full_implementation(op.adjoint.inverse, domain_dtype, target_dtype, atol,
                         rtol)


Martin Reinecke's avatar
Martin Reinecke committed
76
def _get_acceptable_location(op, loc, lin):
Martin Reinecke's avatar
Martin Reinecke committed
77
    if not np.isfinite(lin.val.sum()):
Martin Reinecke's avatar
Martin Reinecke committed
78 79 80 81
        raise ValueError('Initial value must be finite')
    dir = from_random("normal", loc.domain)
    dirder = lin.jac(dir)
    if dirder.norm() == 0:
Martin Reinecke's avatar
Martin Reinecke committed
82
        dir = dir * (lin.val.norm()*1e-5)
Martin Reinecke's avatar
Martin Reinecke committed
83
    else:
Martin Reinecke's avatar
Martin Reinecke committed
84
        dir = dir * (lin.val.norm()*1e-5/dirder.norm())
Martin Reinecke's avatar
Martin Reinecke committed
85 86 87 88
    # Find a step length that leads to a "reasonable" location
    for i in range(50):
        try:
            loc2 = loc+dir
89
            lin2 = op(Linearization.make_var(loc2, lin.want_metric))
Martin Reinecke's avatar
Martin Reinecke committed
90 91 92 93 94 95 96 97 98
            if np.isfinite(lin2.val.sum()) and abs(lin2.val.sum()) < 1e20:
                break
        except FloatingPointError:
            pass
        dir = dir*0.5
    else:
        raise ValueError("could not find a reasonable initial step")
    return loc2, lin2

Martin Reinecke's avatar
Martin Reinecke committed
99

Martin Reinecke's avatar
Martin Reinecke committed
100
def _check_consistency(op, loc, tol, ntries, do_metric):
Martin Reinecke's avatar
Martin Reinecke committed
101
    for _ in range(ntries):
102
        lin = op(Linearization.make_var(loc, do_metric))
Martin Reinecke's avatar
Martin Reinecke committed
103
        loc2, lin2 = _get_acceptable_location(op, loc, lin)
Martin Reinecke's avatar
Martin Reinecke committed
104
        dir = loc2-loc
Martin Reinecke's avatar
Martin Reinecke committed
105 106 107 108
        locnext = loc2
        dirnorm = dir.norm()
        for i in range(50):
            locmid = loc + 0.5*dir
109
            linmid = op(Linearization.make_var(locmid, do_metric))
Martin Reinecke's avatar
Martin Reinecke committed
110 111
            dirder = linmid.jac(dir)
            numgrad = (lin2.val-lin.val)
Martin Reinecke's avatar
Martin Reinecke committed
112
            xtol = tol * dirder.norm() / np.sqrt(dirder.size)
Martin Reinecke's avatar
Martin Reinecke committed
113 114
            cond = (abs(numgrad-dirder) <= xtol).all()
            if do_metric:
Martin Reinecke's avatar
Martin Reinecke committed
115 116
                dgrad = linmid.metric(dir)
                dgrad2 = (lin2.gradient-lin.gradient)
Martin Reinecke's avatar
Martin Reinecke committed
117 118
                cond = cond and (abs(dgrad-dgrad2) <= xtol).all()
            if cond:
Martin Reinecke's avatar
Martin Reinecke committed
119 120 121
                break
            dir = dir*0.5
            dirnorm *= 0.5
Martin Reinecke's avatar
Martin Reinecke committed
122
            loc2, lin2 = locmid, linmid
Martin Reinecke's avatar
Martin Reinecke committed
123 124 125
        else:
            raise ValueError("gradient and value seem inconsistent")
        loc = locnext
Martin Reinecke's avatar
Martin Reinecke committed
126 127


Martin Reinecke's avatar
Martin Reinecke committed
128 129 130 131
def check_value_gradient_consistency(op, loc, tol=1e-8, ntries=100):
    _check_consistency(op, loc, tol, ntries, False)


Martin Reinecke's avatar
Martin Reinecke committed
132
def check_value_gradient_metric_consistency(op, loc, tol=1e-8, ntries=100):
Martin Reinecke's avatar
Martin Reinecke committed
133
    _check_consistency(op, loc, tol, ntries, True)