plot.py 12.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
20

Martin Reinecke's avatar
Martin Reinecke committed
21
22
import os

23
24
import numpy as np

Martin Reinecke's avatar
fix    
Martin Reinecke committed
25
26
27
28
29
30
31
from . import dobj
from .compat import *
from .domains.gl_space import GLSpace
from .domains.hp_space import HPSpace
from .domains.power_space import PowerSpace
from .domains.rg_space import RGSpace
from .field import Field
32

Martin Reinecke's avatar
Martin Reinecke committed
33
34
35
36
37
38
39
40
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
41
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
42

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
43

Martin Reinecke's avatar
Martin Reinecke committed
44
45
46
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
47
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
48
    xc, yc = (xsize-1)*0.5, (ysize-1)*0.5
Martin Reinecke's avatar
Martin Reinecke committed
49
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
Martin Reinecke's avatar
Martin Reinecke committed
50
    u, v = 2*(u-xc)/(xc/1.02), (v-yc)/(yc/1.02)
Martin Reinecke's avatar
Martin Reinecke committed
51
52
53
54
55
56
57
58
59

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
60

Martin Reinecke's avatar
Martin Reinecke committed
61
62
def _find_closest(A, target):
    # A must be sorted
Martin Reinecke's avatar
Martin Reinecke committed
63
64
    idx = np.clip(A.searchsorted(target), 1, len(A)-1)
    idx -= target - A[idx-1] < A[idx] - target
Martin Reinecke's avatar
Martin Reinecke committed
65
66
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
67

Martin Reinecke's avatar
Martin Reinecke committed
68
def _makeplot(name):
69
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
70
    if dobj.rank != 0:
71
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
72
        return
Martin Reinecke's avatar
Martin Reinecke committed
73
74
    if name is None:
        plt.show()
75
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
76
77
        return
    extension = os.path.splitext(name)[1]
78
    if extension in (".pdf", ".png", ".svg"):
Martin Reinecke's avatar
Martin Reinecke committed
79
80
81
82
83
        plt.savefig(name)
        plt.close()
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
84

Martin Reinecke's avatar
Martin Reinecke committed
85
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
86
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
87
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
88
89
90
91
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
92
93
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
94

Martin Reinecke's avatar
Martin Reinecke committed
95
96
97
98
99
100
101
102
103
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
150
151
152

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
153
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
154
155
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
156
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
157

Martin Reinecke's avatar
Martin Reinecke committed
158

Martin Reinecke's avatar
Martin Reinecke committed
159
def _plot(f, ax, **kwargs):
160
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
161
    _register_cmaps()
162
163
164
    if isinstance(f, Field):
        f = [f]
    if not isinstance(f, list):
Martin Reinecke's avatar
Martin Reinecke committed
165
        raise TypeError("incorrect data type")
166
167
168
169
170
171
172
173
174
175
176
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
            if len(dom) != 1:
                raise ValueError("input field must have exactly one domain")
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
            if not (isinstance(dom[0], PowerSpace) or
177
                    (isinstance(dom[0], RGSpace) and len(dom[0].shape) == 1)):
178
                raise ValueError("PowerSpace or 1D RGSpace required")
Martin Reinecke's avatar
Martin Reinecke committed
179

clienhar's avatar
clienhar committed
180
    label = kwargs.pop("label", None)
181
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
182
        label = [label] * len(f)
Martin Reinecke's avatar
Martin Reinecke committed
183

Martin Reinecke's avatar
Martin Reinecke committed
184
    linewidth = kwargs.pop("linewidth", 1.)
Philipp Arras's avatar
Philipp Arras committed
185
    if not isinstance(linewidth, list):
Martin Reinecke's avatar
Martin Reinecke committed
186
        linewidth = [linewidth] * len(f)
Philipp Arras's avatar
Philipp Arras committed
187

clienhar's avatar
clienhar committed
188
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
189
    if not isinstance(alpha, list):
Martin Reinecke's avatar
Martin Reinecke committed
190
        alpha = [alpha] * len(f)
Philipp Arras's avatar
Philipp Arras committed
191

Philipp Arras's avatar
Philipp Arras committed
192
193
    foo = kwargs.pop("norm", None)
    norm = {} if foo is None else {'norm': foo}
194

195
    dom = dom[0]
clienhar's avatar
clienhar committed
196
197
198
199
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
Martin Reinecke's avatar
Martin Reinecke committed
200
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
201
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
202
203
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
204
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
205
            for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
206
                ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
207
208
                plt.plot(xcoord, ycoord, label=label[i],
                         linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
209
            _limit_xy(**kwargs)
210
211
            if label != ([None]*len(f)):
                plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
212
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
213
        elif len(dom.shape) == 2:
Martin Reinecke's avatar
Martin Reinecke committed
214
215
            nx, ny = dom.shape
            dx, dy = dom.distances
Martin Reinecke's avatar
Martin Reinecke committed
216
217
218
219
            im = ax.imshow(
                f[0].to_global_data().T, extent=[0, nx*dx, 0, ny*dy],
                vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                cmap=cmap, origin="lower", **norm)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
220
221
222
223
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
224
            plt.colorbar(im)
Martin Reinecke's avatar
Martin Reinecke committed
225
            _limit_xy(**kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
226
227
228
229
            return
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
Philipp Arras's avatar
Philipp Arras committed
230
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
231
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
232
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
233
234
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
235
        _limit_xy(**kwargs)
236
237
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
238
        return
Martin Reinecke's avatar
Martin Reinecke committed
239
    elif isinstance(dom, (HPSpace, GLSpace)):
Martin Reinecke's avatar
Martin Reinecke committed
240
241
242
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
Martin Reinecke's avatar
Martin Reinecke committed
243
244
245
246
247
248
249
250
251
252
253
254
255
        if isinstance(dom, HPSpace):
            ptg = np.empty((phi.size, 2), dtype=np.float64)
            ptg[:, 0] = theta
            ptg[:, 1] = phi
            base = pyHealpix.Healpix_Base(int(np.sqrt(f[0].size//12)), "RING")
            res[mask] = f[0].to_global_data()[base.ang2pix(ptg)]
        else:
            ra = np.linspace(0, 2*np.pi, dom.nlon+1)
            dec = pyHealpix.GL_thetas(dom.nlat)
            ilat = _find_closest(dec, theta)
            ilon = _find_closest(ra, phi)
            ilon = np.where(ilon == dom.nlon, 0, ilon)
            res[mask] = f[0].to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
256
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
257
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
258
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
259
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
260
261
262
        return

    raise ValueError("Field type not(yet) supported")
Martin Reinecke's avatar
Martin Reinecke committed
263

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
264

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
class Plot(object):
    def __init__(self):
        self._plots = []
        self._kwargs = []

    def add(self, f, **kwargs):
        """Add a figure to the current list of plots.

        Notes
        -----
        After doing one or more calls `plot()`, one also needs to call
        `plot_finish()` to output the result.

        Parameters
        ----------
        f: Field, or list of Field objects
            If `f` is a single Field, it must live over a single `RGSpace`,
            `PowerSpace`, `HPSpace`, `GLSPace`.
            If it is a list, all list members must be Fields living over the
            same one-dimensional `RGSpace` or `PowerSpace`.
        title: string
            title of the plot
        xlabel: string
            label for the x axis
        ylabel: string
            label for the y axis
        [xyz]min, [xyz]max: float
            limits for the values to plot
        colormap: string
            color map to use for the plot (if it is a 2D plot)
        linewidth: float or list of floats
            line width
        label: string of list of strings
            annotation string
        alpha: float or list of floats
            transparency value
        """
        self._plots.append(f)
        self._kwargs.append(kwargs)

    def output(self, **kwargs):
        """Plot the accumulated list of figures.

        Parameters
        ----------
        title: string
            title of the full plot
        nx, ny: integer (default: square root of the numer of plots, rounded up)
            number of subplots to use in x- and y-direction
        xsize, ysize: float (default: 6)
            dimensions of the full plot in inches
        name: string (default: "")
            if left empty, the plot will be shown on the screen,
            otherwise it will be written to a file with the given name.
            Supported extensions: .png and .pdf
        """
        import matplotlib.pyplot as plt
        nplot = len(self._plots)
        fig = plt.figure()
        if "title" in kwargs:
            plt.suptitle(kwargs.pop("title"))
        nx = kwargs.pop("nx", int(np.ceil(np.sqrt(nplot))))
        ny = kwargs.pop("ny", int(np.ceil(np.sqrt(nplot))))
        if nx*ny < nplot:
            raise ValueError(
                'Figure dimensions not sufficient for number of plots. '
                'Available plot slots: {}, number of plots: {}'
                .format(nx*ny, nplot))
        xsize = kwargs.pop("xsize", 6)
        ysize = kwargs.pop("ysize", 6)
        fig.set_size_inches(xsize, ysize)
        for i in range(nplot):
            ax = fig.add_subplot(ny, nx, i+1)
            _plot(self._plots[i], ax, **self._kwargs[i])
        fig.tight_layout()
        _makeplot(kwargs.pop("name", None))