test_smoothing_operator.py 5.25 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

import unittest
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
21
from numpy.testing import assert_equal, assert_approx_equal,\
22
    assert_allclose
23

24
25
26
27
from nifty import Field,\
    RGSpace,\
    PowerSpace,\
    SmoothingOperator
28

29
30
31
32
33
34
35
36
37
38
from itertools import product
from test.common import expand


def _get_rtol(tp):
    if (tp == np.float64) or (tp == np.complex128):
        return 1e-10
    else:
        return 1e-5

39
class SmoothingOperator_Tests(unittest.TestCase):
40
    spaces = [RGSpace(100)]
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

    @expand(product(spaces, [0., .5, 5.], [True, False]))
    def test_property(self, space, sigma, log_distances):
        op = SmoothingOperator(space, sigma=sigma,
                              log_distances=log_distances)
        if op.domain[0] != space:
            raise TypeError
        if op.unitary != False:
            raise ValueError
        if op.self_adjoint != True:
            raise ValueError
        if op.sigma != sigma:
            raise ValueError
        if op.log_distances != log_distances:
            raise ValueError

    @expand(product(spaces, [0., .5, 5.], [True, False]))
    def test_adjoint_times(self, space, sigma, log_distances):
        op = SmoothingOperator(space, sigma=sigma,
                              log_distances=log_distances)
        rand1 = Field.from_random('normal', domain=space)
        rand2 = Field.from_random('normal', domain=space)
        tt1 = rand1.dot(op.times(rand2))
        tt2 = rand2.dot(op.adjoint_times(rand1))
        assert_approx_equal(tt1, tt2)

67
    @expand(product(spaces, [0., .5, 5.], [False]))
68
69
70
71
72
73
74
    def test_times(self, space, sigma, log_distances):
        op = SmoothingOperator(space, sigma=sigma,
                              log_distances=log_distances)
        rand1 = Field(space, val=0.)
        rand1.val[0] = 1.
        tt1 = op.times(rand1)
        assert_approx_equal(1, tt1.sum())
75

76
77
78
79
80
81
82
83
84
    @expand(product(spaces, [0., .5, 5.], [True, False]))
    def test_inverse_adjoint_times(self, space, sigma, log_distances):
        op = SmoothingOperator(space, sigma=sigma,
                              log_distances=log_distances)
        rand1 = Field.from_random('normal', domain=space)
        rand2 = Field.from_random('normal', domain=space)
        tt1 = rand1.dot(op.inverse_times(rand2))
        tt2 = rand2.dot(op.inverse_adjoint_times(rand1))
        assert_approx_equal(tt1, tt2)
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

    @expand(product([100, 200], [1, 0.4], [0., 1.,  3.7],
                    [np.float64, np.complex128]))
    def test_smooth_regular1(self, sz, d, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace(sz, harmonic=True, distances=d)
        smo = SmoothingOperator(sp, sigma=sigma)
        inp = Field.from_random(domain=sp, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        inp = inp.val.get_full_data()
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)

    @expand(product([10, 15], [7, 10], [1, 0.4], [2, 0.3], [0., 1.,  3.7],
                    [np.float64, np.complex128]))
    def test_smooth_regular2(self, sz1, sz2, d1, d2, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace([sz1, sz2], distances=[d1, d2], harmonic=True)
        smo = SmoothingOperator(sp, sigma=sigma)
        inp = Field.from_random(domain=sp, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        inp = inp.val.get_full_data()
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)

    @expand(product([100, 200], [False, True], [0., 1.,  3.7],
                    [np.float64, np.complex128]))
    def test_smooth_irregular1(self, sz, log, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace(sz, harmonic=True)
        ps = PowerSpace(sp, nbin=sz, logarithmic=log)
        smo = SmoothingOperator(ps, sigma=sigma)
        inp = Field.from_random(domain=ps, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        inp = inp.val.get_full_data()
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)

    @expand(product([10, 15], [7, 10], [False, True], [0., 1.,  3.7],
                    [np.float64, np.complex128]))
    def test_smooth_irregular2(self, sz1, sz2, log, sigma, tp):
        tol = _get_rtol(tp)
        sp = RGSpace([sz1, sz2], harmonic=True)
        ps = PowerSpace(sp, logarithmic=log)
        smo = SmoothingOperator(ps, sigma=sigma)
        inp = Field.from_random(domain=ps, random_type='normal', std=1, mean=4,
                                dtype=tp)
        out = smo(inp)
        inp = inp.val.get_full_data()
        assert_allclose(inp.sum(), out.sum(), rtol=tol, atol=tol)