rg_space.py 12.3 KB
Newer Older
1
2
3
4
5
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
6
7
8
9
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
10
#
11
12
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
13
14
15
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
16
# You should have received a copy of the GNU General Public License
17
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
32

Marco Selig's avatar
Marco Selig committed
33
import numpy as np
Ultimanet's avatar
Ultimanet committed
34

35
36
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES
37

38
from nifty.spaces.space import Space
csongor's avatar
csongor committed
39

Marco Selig's avatar
Marco Selig committed
40

Theo Steininger's avatar
Theo Steininger committed
41
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
42
43
44
45
46
47
48
49
50
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

Theo Steininger's avatar
Theo Steininger committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        Parameters
        ----------
        shape : {int, numpy.ndarray}
            Number of grid points or numbers of gridpoints along each axis.
        zerocenter : {bool, numpy.ndarray}, *optional*
        Whether x==0 (or k==0, respectively) is located in the center of
        the grid (or the center of each axis speparately) or not.
        (default: False).
        distances : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis
            (default: None).
            If distances==None:
                if harmonic==True, all distances will be set to 1
                if harmonic==False, the distance along each axis will be
                  set to the inverse of the number of points along that
                  axis.
        harmonic : bool, *optional*
        Whether the space represents a grid in position or harmonic space.
Theo Steininger's avatar
Theo Steininger committed
69
            (default: False).
Marco Selig's avatar
Marco Selig committed
70
71
72

        Attributes
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
73
        harmonic : bool
Theo Steininger's avatar
Theo Steininger committed
74
75
76
77
78
            Whether or not the grid represents a position or harmonic space.
        zerocenter : tuple of bool
            Whether x==0 (or k==0, respectively) is located in the center of
            the grid (or the center of each axis speparately) or not.
        distances : tuple of floats
79
80
81
82
83
84
85
86
87
            Distance between two grid points along the correponding axis.
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
Theo Steininger's avatar
Theo Steininger committed
88

Marco Selig's avatar
Marco Selig committed
89
90
    """

91
92
    # ---Overwritten properties and methods---

93
    def __init__(self, shape, zerocenter=False, distances=None,
Martin Reinecke's avatar
Martin Reinecke committed
94
                 harmonic=False):
95
96
        self._harmonic = bool(harmonic)

Martin Reinecke's avatar
Martin Reinecke committed
97
        super(RGSpace, self).__init__()
98

99
100
101
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
        self._zerocenter = self._parse_zerocenter(zerocenter)
Marco Selig's avatar
Marco Selig committed
102

103
104
    def hermitian_decomposition(self, x, axes=None,
                                preserve_gaussian_variance=False):
105
106
107
108
109
110
111
112
        # compute the hermitian part
        flipped_x = self._hermitianize_inverter(x, axes=axes)
        flipped_x = flipped_x.conjugate()
        # average x and flipped_x.
        hermitian_part = x + flipped_x
        hermitian_part /= 2.

        # use subtraction since it is faster than flipping another time
113
        anti_hermitian_part = (x-hermitian_part)
114
115
116
117
118
119
120

        if preserve_gaussian_variance:
            hermitian_part, anti_hermitian_part = \
                self._hermitianize_correct_variance(hermitian_part,
                                                    anti_hermitian_part,
                                                    axes=axes)

121
122
        return (hermitian_part, anti_hermitian_part)

123
124
125
126
127
128
129
130
131
132
133
#    def hermitian_fixed_points(self):
#        shape = self.shape
#        mid_index = np.array(shape)//2
#        ndlist = [2 if (shape[i] % 2 == 0) else 1 for i in xrange(len(shape))]
#        ndlist = tuple(ndlist)
#        odd_axes_list = np.array([1 if (shape[i] % 2 == 1) else 0
#                                  for i in xrange(len(shape))])
#        fixed_points = []
#        for i in np.ndindex(ndlist):
#            fixed_points += [tuple((i+odd_axes_list) * mid_index)]
#        return fixed_points
134

135
136
137
138
139
140
    def _hermitianize_correct_variance(self, hermitian_part,
                                       anti_hermitian_part, axes):
        # Correct the variance by multiplying sqrt(2)
        hermitian_part = hermitian_part * np.sqrt(2)
        anti_hermitian_part = anti_hermitian_part * np.sqrt(2)

Martin Reinecke's avatar
Martin Reinecke committed
141
        # The fixed points of the point inversion must not be averaged.
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        # Hence one must divide out the sqrt(2) again
        # -> Get the middle index of the array
        mid_index = np.array(hermitian_part.shape, dtype=np.int) // 2
        dimensions = mid_index.size
        # Use ndindex to iterate over all combinations of zeros and the
        # mid_index in order to correct all fixed points.
        if axes is None:
            axes = xrange(dimensions)

        ndlist = [2 if i in axes else 1 for i in xrange(dimensions)]
        ndlist = tuple(ndlist)
        for i in np.ndindex(ndlist):
            temp_index = tuple(i * mid_index)
            hermitian_part[temp_index] /= np.sqrt(2)
            anti_hermitian_part[temp_index] /= np.sqrt(2)
        return hermitian_part, anti_hermitian_part

159
    def _hermitianize_inverter(self, x, axes):
160
        shape = x.shape
161
        # calculate the number of dimensions the input array has
162
        dimensions = len(shape)
163
164
165
166
167
168
169
170
171
172
173
        # prepare the slicing object which will be used for mirroring
        slice_primitive = [slice(None), ] * dimensions
        # copy the input data
        y = x.copy()

        if axes is None:
            axes = xrange(dimensions)

        # flip in the desired directions
        for i in axes:
            slice_picker = slice_primitive[:]
174
175
176
177
            if shape[i] % 2 == 0:
                slice_picker[i] = slice(1, None, None)
            else:
                slice_picker[i] = slice(None)
178
179
180
            slice_picker = tuple(slice_picker)

            slice_inverter = slice_primitive[:]
181
182
183
184
            if shape[i] % 2 == 0:
                slice_inverter[i] = slice(None, 0, -1)
            else:
                slice_inverter[i] = slice(None, None, -1)
185
186
187
188
189
190
191
192
193
            slice_inverter = tuple(slice_inverter)

            try:
                y.set_data(to_key=slice_picker, data=y,
                           from_key=slice_inverter)
            except(AttributeError):
                y[slice_picker] = y[slice_inverter]
        return y

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    # ---Mandatory properties and methods---

    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
        return reduce(lambda x, y: x*y, self.shape)

    @property
    def total_volume(self):
        return self.dim * reduce(lambda x, y: x*y, self.distances)

    def copy(self):
        return self.__class__(shape=self.shape,
                              zerocenter=self.zerocenter,
                              distances=self.distances,
Martin Reinecke's avatar
Martin Reinecke committed
216
                              harmonic=self.harmonic)
217
218

    def weight(self, x, power=1, axes=None, inplace=False):
219
        weight = reduce(lambda x, y: x*y, self.distances) ** np.float(power)
220
221
222
223
224
225
226
        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x*weight
        return result_x

227
    def get_distance_array(self, distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
228
229
        """ Calculates an n-dimensional array with its entries being the
        lengths of the vectors from the zero point of the grid.
theos's avatar
theos committed
230

Theo Steininger's avatar
Theo Steininger committed
231
232
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
233
234
235
        distribution_strategy : str
            The distribution_strategy which shall be used the returned
            distributed_data_object.
theos's avatar
theos committed
236

Theo Steininger's avatar
Theo Steininger committed
237
238
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
239
        distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
240
241
            A d2o containing the distances.

theos's avatar
theos committed
242
        """
Theo Steininger's avatar
Theo Steininger committed
243

theos's avatar
theos committed
244
245
246
        shape = self.shape
        # prepare the distributed_data_object
        nkdict = distributed_data_object(
Martin Reinecke's avatar
Martin Reinecke committed
247
                        global_shape=shape, dtype=np.float64,
theos's avatar
theos committed
248
249
250
251
252
253
254
255
256
                        distribution_strategy=distribution_strategy)

        if distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            # get the node's individual slice of the first dimension
            slice_of_first_dimension = slice(
                                    *nkdict.distributor.local_slice[0:2])
        elif distribution_strategy in DISTRIBUTION_STRATEGIES['not']:
            slice_of_first_dimension = slice(0, shape[0])
        else:
257
258
            raise ValueError(
                "Unsupported distribution strategy")
theos's avatar
theos committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        dists = self._distance_array_helper(slice_of_first_dimension)
        nkdict.set_local_data(dists)

        return nkdict

    def _distance_array_helper(self, slice_of_first_dimension):
        dk = self.distances
        shape = self.shape

        inds = []
        for a in shape:
            inds += [slice(0, a)]

        cords = np.ogrid[inds]

Theo Steininger's avatar
Theo Steininger committed
274
        dists = ((cords[0] - shape[0]//2)*dk[0])**2
theos's avatar
theos committed
275
        # apply zerocenterQ shift
276
277
        if not self.zerocenter[0]:
            dists = np.fft.ifftshift(dists)
theos's avatar
theos committed
278
279
280
281
        # only save the individual slice
        dists = dists[slice_of_first_dimension]
        for ii in range(1, len(shape)):
            temp = ((cords[ii] - shape[ii] // 2) * dk[ii])**2
282
            if not self.zerocenter[ii]:
Martin Reinecke's avatar
Martin Reinecke committed
283
                temp = np.fft.ifftshift(temp)
theos's avatar
theos committed
284
285
286
287
            dists = dists + temp
        dists = np.sqrt(dists)
        return dists

288
    def get_fft_smoothing_kernel_function(self, sigma):
Theo Steininger's avatar
Theo Steininger committed
289

theos's avatar
theos committed
290
291
292
        if sigma is None:
            sigma = np.sqrt(2) * np.max(self.distances)

293
        return lambda x: np.exp(-0.5 * np.pi**2 * x**2 * sigma**2)
theos's avatar
theos committed
294

295
296
297
298
    # ---Added properties and methods---

    @property
    def distances(self):
Theo Steininger's avatar
Theo Steininger committed
299
300
301
        """Distance between two grid points along each axis. It is a tuple
        of positive floating point numbers with the n-th entry giving the
        distances of grid points along the n-th dimension.
302
        """
Theo Steininger's avatar
Theo Steininger committed
303

304
305
306
307
        return self._distances

    @property
    def zerocenter(self):
308
        """Returns True if grid points lie symmetrically around zero.
Theo Steininger's avatar
Theo Steininger committed
309

310
311
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
312
313
314
315
316
        bool
            True if the grid points are centered around the 0 grid point. This
            option is most common for harmonic spaces (where both conventions
            are used) but may be used for position spaces, too.

317
        """
Theo Steininger's avatar
Theo Steininger committed
318

319
320
321
322
323
324
325
326
327
328
329
330
        return self._zerocenter

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
331
                temp = np.ones_like(self.shape, dtype=np.float64)
332
            else:
Martin Reinecke's avatar
Martin Reinecke committed
333
                temp = 1 / np.array(self.shape, dtype=np.float64)
334
        else:
Martin Reinecke's avatar
Martin Reinecke committed
335
            temp = np.empty(len(self.shape), dtype=np.float64)
336
337
338
339
340
341
342
            temp[:] = distances
        return tuple(temp)

    def _parse_zerocenter(self, zerocenter):
        temp = np.empty(len(self.shape), dtype=bool)
        temp[:] = zerocenter
        return tuple(temp)
343
344
345
346

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
347
348
349
        hdf5_group['shape'] = self.shape
        hdf5_group['zerocenter'] = self.zerocenter
        hdf5_group['distances'] = self.distances
350
        hdf5_group['harmonic'] = self.harmonic
Jait Dixit's avatar
Jait Dixit committed
351

352
353
354
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
355
    def _from_hdf5(cls, hdf5_group, repository):
356
        result = cls(
Jait Dixit's avatar
Jait Dixit committed
357
358
359
            shape=hdf5_group['shape'][:],
            zerocenter=hdf5_group['zerocenter'][:],
            distances=hdf5_group['distances'][:],
360
            harmonic=hdf5_group['harmonic'][()],
Jait Dixit's avatar
Jait Dixit committed
361
            )
362
        return result