lm_space.py 6.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

csongor's avatar
csongor committed
19
20
21
22
from __future__ import division

import numpy as np

23
from nifty.spaces.space import Space
theos's avatar
theos committed
24

Jait Dixit's avatar
Jait Dixit committed
25
26
from d2o import arange

csongor's avatar
csongor committed
27

Theo Steininger's avatar
Theo Steininger committed
28
class LMSpace(Space):
csongor's avatar
csongor committed
29
30
31
32
33
34
35
36
37
38
39
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

40
41
42
43
44
45
        Parameters
        ----------
        lmax : int
            The maximal :math:`l` value of any spherical harmonics
            :math:`Y_{lm}` that is represented in this Space.

46
        Attributes
csongor's avatar
csongor committed
47
48
        ----------
        lmax : int
49
50
51
52
53
            The maximal :math:`l` value of any spherical harmonics
            :math:`Y_{lm}` that is represented in this Space.
        mmax : int
            The maximal :math:`m` value of any spherical harmonic
            :math:`Y_{lm}` that is represented in this Space.
54
55
56
57
58
59
60
61
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
csongor's avatar
csongor committed
62
63
64
65
66
67
68

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

Theo Steininger's avatar
Theo Steininger committed
69
70
71
72
73
        Raises
        ------
        ValueError
            If given lmax is negative.

74
75
        Notes
        -----
Theo Steininger's avatar
Theo Steininger committed
76
            This implementation implicitly sets the mmax parameter to lmax.
77

csongor's avatar
csongor committed
78
79
80
81
82
83
84
85
86
87
        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
    """

Martin Reinecke's avatar
Martin Reinecke committed
88
89
    def __init__(self, lmax):
        super(LMSpace, self).__init__()
csongor's avatar
csongor committed
90
        self._lmax = self._parse_lmax(lmax)
csongor's avatar
csongor committed
91

92
93
    def hermitian_decomposition(self, x, axes=None,
                                preserve_gaussian_variance=False):
94
95
96
        hermitian_part = x.copy_empty()
        anti_hermitian_part = x.copy_empty()
        hermitian_part[:] = x.real
97
        anti_hermitian_part[:] = x.imag * 1j
98
99
        return (hermitian_part, anti_hermitian_part)

100
101
#    def hermitian_fixed_points(self):
#        return None
102

Theo Steininger's avatar
Theo Steininger committed
103
    # ---Mandatory properties and methods---
csongor's avatar
csongor committed
104
105
106
107

    @property
    def harmonic(self):
        return True
csongor's avatar
csongor committed
108
109

    @property
110
111
    def shape(self):
        return (self.dim, )
csongor's avatar
csongor committed
112
113

    @property
114
115
    def dim(self):
        l = self.lmax
116
        # the LMSpace consists of the full triangle (including -m's!),
theos's avatar
theos committed
117
118
        # minus two little triangles if mmax < lmax
        # dim = (((2*(l+1)-1)+1)**2/4 - 2 * (l-m)(l-m+1)/2
119
120
121
        # dim = np.int((l+1)**2 - (l-m)*(l-m+1.))
        # We fix l == m
        return np.int((l+1)**2)
csongor's avatar
csongor committed
122

123
124
125
    @property
    def total_volume(self):
        # the individual pixels have a fixed volume of 1.
Martin Reinecke's avatar
Martin Reinecke committed
126
        return np.float64(self.dim)
csongor's avatar
csongor committed
127

128
    def copy(self):
Martin Reinecke's avatar
Martin Reinecke committed
129
        return self.__class__(lmax=self.lmax)
csongor's avatar
csongor committed
130

131
132
133
    def weight(self, x, power=1, axes=None, inplace=False):
        if inplace:
            return x
csongor's avatar
csongor committed
134
        else:
135
            return x.copy()
csongor's avatar
csongor committed
136

137
138
139
140
141
    def get_distance_array(self, distribution_strategy):
        dists = arange(start=0, stop=self.shape[0],
                       distribution_strategy=distribution_strategy)

        dists = dists.apply_scalar_function(
142
            lambda x: self._distance_array_helper(x, self.lmax),
Martin Reinecke's avatar
Martin Reinecke committed
143
            dtype=np.float64)
144
145
146

        return dists

147
148
149
150
151
152
153
154
    @staticmethod
    def _distance_array_helper(index_array, lmax):
        u = 2*lmax + 1
        index_half = (index_array+np.minimum(lmax, index_array)+1)//2
        m = (np.ceil((u - np.sqrt(u*u - 8*(index_half - lmax)))/2)).astype(int)
        res = (index_half - m*(u - m)//2).astype(np.float64)
        return res

155
    def get_fft_smoothing_kernel_function(self, sigma):
156
        # FIXME why x(x+1) ? add reference to paper!
157
158
        return lambda x: np.exp(-0.5 * x * (x + 1) * sigma**2)

csongor's avatar
csongor committed
159
160
161
162
    # ---Added properties and methods---

    @property
    def lmax(self):
Theo Steininger's avatar
Theo Steininger committed
163
164
        """ Returns the maximal :math:`l` value of any spherical harmonics
        :math:`Y_{lm}` that is represented in this Space.
165
        """
csongor's avatar
csongor committed
166
167
168
169
        return self._lmax

    @property
    def mmax(self):
Theo Steininger's avatar
Theo Steininger committed
170
171
172
173
174
        """ Returns the maximal :math:`m` value of any spherical harmonic
        :math:`Y_{lm}` that is represented in this Space. As :math:`m` goes
        from :math:`-l` to :math:`l` for every :math:`l` this just returns the
        same as lmax.

175
176
        See Also
        --------
Theo Steininger's avatar
Theo Steininger committed
177
178
179
        lmax : Returns the maximal :math:`l`-value of the spherical harmonics
            being used.

180
        """
Theo Steininger's avatar
Theo Steininger committed
181

182
        return self._lmax
csongor's avatar
csongor committed
183
184
185

    def _parse_lmax(self, lmax):
        lmax = np.int(lmax)
186
187
        if lmax < 0:
            raise ValueError("lmax must be >=0.")
csongor's avatar
csongor committed
188
        return lmax
Jait Dixit's avatar
Jait Dixit committed
189
190
191
192
193
194
195
196

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
        hdf5_group['lmax'] = self.lmax
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
197
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
198
199
200
201
        result = cls(
            lmax=hdf5_group['lmax'][()],
            )
        return result