operator.py 8.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Martin Reinecke's avatar
Martin Reinecke committed
18
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19
from ..utilities import NiftyMetaBase, indent
Martin Reinecke's avatar
Martin Reinecke committed
20
21
22
23
24
25
26


class Operator(NiftyMetaBase()):
    """Transforms values living on one domain into values living on another
    domain, and can also provide the Jacobian.
    """

Martin Reinecke's avatar
Martin Reinecke committed
27
    @property
Martin Reinecke's avatar
Martin Reinecke committed
28
29
30
    def domain(self):
        """DomainTuple or MultiDomain : the operator's input domain

Philipp Arras's avatar
Philipp Arras committed
31
            The domain on which the Operator's input Field is defined."""
Martin Reinecke's avatar
Martin Reinecke committed
32
        return self._domain
Martin Reinecke's avatar
Martin Reinecke committed
33

Martin Reinecke's avatar
Martin Reinecke committed
34
    @property
Martin Reinecke's avatar
Martin Reinecke committed
35
36
37
    def target(self):
        """DomainTuple or MultiDomain : the operator's output domain

Philipp Arras's avatar
Philipp Arras committed
38
            The domain on which the Operator's output Field is defined."""
Martin Reinecke's avatar
Martin Reinecke committed
39
        return self._target
Martin Reinecke's avatar
Martin Reinecke committed
40

Martin Reinecke's avatar
Martin Reinecke committed
41
42
43
44
45
46
    @staticmethod
    def _check_domain_equality(dom_op, dom_field):
        if dom_op != dom_field:
            s = "The operator's and field's domains don't match."
            from ..domain_tuple import DomainTuple
            from ..multi_domain import MultiDomain
Sebastian Hutschenreuter's avatar
fix  
Sebastian Hutschenreuter committed
47
            if not isinstance(dom_op, (DomainTuple, MultiDomain,)):
Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
51
                s += " Your operator's domain is neither a `DomainTuple`" \
                     " nor a `MultiDomain`."
            raise ValueError(s)

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
52
53
54
55
56
57
58
59
60
61
    def scale(self, factor):
        if factor == 1:
            return self
        from .scaling_operator import ScalingOperator
        return ScalingOperator(factor, self.target)(self)

    def conjugate(self):
        from .simple_linear_operators import ConjugationOperator
        return ConjugationOperator(self.target)(self)

Martin Reinecke's avatar
Martin Reinecke committed
62
63
64
65
66
    @property
    def real(self):
        from .simple_linear_operators import Realizer
        return Realizer(self.target)(self)

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
67
68
69
    def __neg__(self):
        return self.scale(-1)

Martin Reinecke's avatar
Martin Reinecke committed
70
71
72
    def __matmul__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
73
        return _OpChain.make((self, x))
Martin Reinecke's avatar
Martin Reinecke committed
74

Martin Reinecke's avatar
Martin Reinecke committed
75
    def __mul__(self, x):
76
77
78
79
80
        if isinstance(x, Operator):
            return _OpProd(self, x)
        if np.isscalar(x):
            return self.scale(x)
        return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
81

82
83
84
    def __rmul__(self, x):
        return self.__mul__(x)

Philipp Arras's avatar
Philipp Arras committed
85
86
87
    def __add__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
88
        return _OpSum(self, x)
Philipp Arras's avatar
Philipp Arras committed
89

90
91
92
93
94
    def __sub__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
        return _OpSum(self, -x)

Martin Reinecke's avatar
Martin Reinecke committed
95
96
97
98
99
    def __pow__(self, power):
        if not np.isscalar(power):
            return NotImplemented
        return _OpChain.make((_PowerOp(self.target, power), self))

Martin Reinecke's avatar
Martin Reinecke committed
100
101
102
    def clip(self, min=None, max=None):
        if min is None and max is None:
            return self
Jakob Knollmueller's avatar
Jakob Knollmueller committed
103
        return _OpChain.make((_Clipper(self.target, min, max), self))
Martin Reinecke's avatar
Martin Reinecke committed
104

Martin Reinecke's avatar
Martin Reinecke committed
105
106
    def apply(self, x):
        raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
107

Philipp Arras's avatar
Philipp Arras committed
108
    def force(self, x):
Philipp Arras's avatar
Philipp Arras committed
109
        """Extract correct subset of domain of x and apply operator."""
Philipp Arras's avatar
Philipp Arras committed
110
111
        return self.apply(x.extract(self.domain))

112
113
114
    def _check_input(self, x):
        from ..linearization import Linearization
        d = x.target if isinstance(x, Linearization) else x.domain
Martin Reinecke's avatar
Martin Reinecke committed
115
        self._check_domain_equality(self._domain, d)
116

Martin Reinecke's avatar
Martin Reinecke committed
117
    def __call__(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
118
119
120
        if isinstance(x, Operator):
            return _OpChain.make((self, x))
        return self.apply(x)
Martin Reinecke's avatar
Martin Reinecke committed
121

Martin Reinecke's avatar
Martin Reinecke committed
122
123
124
125
126
127
128
129
    def ducktape(self, name):
        from .simple_linear_operators import ducktape
        return self(ducktape(self, None, name))

    def ducktape_left(self, name):
        from .simple_linear_operators import ducktape
        return ducktape(None, self, name)(self)

Martin Reinecke's avatar
Martin Reinecke committed
130
131
132
    def __repr__(self):
        return self.__class__.__name__

Martin Reinecke's avatar
Martin Reinecke committed
133

Martin Reinecke's avatar
Martin Reinecke committed
134
for f in ["sqrt", "exp", "log", "tanh", "sigmoid", 'sin', 'cos', 'tan',
135
          'sinh', 'cosh', 'absolute', 'sinc', 'one_over']:
Martin Reinecke's avatar
Martin Reinecke committed
136
137
    def func(f):
        def func2(self):
138
            fa = _FunctionApplier(self.target, f)
Martin Reinecke's avatar
Martin Reinecke committed
139
140
141
142
143
144
145
146
            return _OpChain.make((fa, self))
        return func2
    setattr(Operator, f, func(f))


class _FunctionApplier(Operator):
    def __init__(self, domain, funcname):
        from ..sugar import makeDomain
Martin Reinecke's avatar
Martin Reinecke committed
147
        self._domain = self._target = makeDomain(domain)
Martin Reinecke's avatar
Martin Reinecke committed
148
149
        self._funcname = funcname

Martin Reinecke's avatar
Martin Reinecke committed
150
    def apply(self, x):
151
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
152
153
154
        return getattr(x, self._funcname)()


Martin Reinecke's avatar
Martin Reinecke committed
155
156
157
158
159
160
161
162
163
164
165
166
class _Clipper(Operator):
    def __init__(self, domain, min=None, max=None):
        from ..sugar import makeDomain
        self._domain = self._target = makeDomain(domain)
        self._min = min
        self._max = max

    def apply(self, x):
        self._check_input(x)
        return x.clip(self._min, self._max)


Martin Reinecke's avatar
Martin Reinecke committed
167
168
169
170
171
172
173
174
175
176
177
class _PowerOp(Operator):
    def __init__(self, domain, power):
        from ..sugar import makeDomain
        self._domain = self._target = makeDomain(domain)
        self._power = power

    def apply(self, x):
        self._check_input(x)
        return x**self._power


Martin Reinecke's avatar
Martin Reinecke committed
178
179
180
181
182
183
184
185
186
187
class _CombinedOperator(Operator):
    def __init__(self, ops, _callingfrommake=False):
        if not _callingfrommake:
            raise NotImplementedError
        self._ops = tuple(ops)

    @classmethod
    def unpack(cls, ops, res):
        for op in ops:
            if isinstance(op, cls):
Martin Reinecke's avatar
Martin Reinecke committed
188
                res = cls.unpack(op._ops, res)
Martin Reinecke's avatar
Martin Reinecke committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            else:
                res = res + [op]
        return res

    @classmethod
    def make(cls, ops):
        res = cls.unpack(ops, [])
        if len(res) == 1:
            return res[0]
        return cls(res, _callingfrommake=True)


class _OpChain(_CombinedOperator):
    def __init__(self, ops, _callingfrommake=False):
        super(_OpChain, self).__init__(ops, _callingfrommake)
Martin Reinecke's avatar
Martin Reinecke committed
204
205
        self._domain = self._ops[-1].domain
        self._target = self._ops[0].target
Martin Reinecke's avatar
Martin Reinecke committed
206
207
208
        for i in range(1, len(self._ops)):
            if self._ops[i-1].domain != self._ops[i].target:
                raise ValueError("domain mismatch")
Martin Reinecke's avatar
Martin Reinecke committed
209

Martin Reinecke's avatar
Martin Reinecke committed
210
    def apply(self, x):
211
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
212
213
214
215
        for op in reversed(self._ops):
            x = op(x)
        return x

Philipp Arras's avatar
Philipp Arras committed
216
217
218
219
220
    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in self._ops)
        return "_OpChain:\n" + indent(subs)


Martin Reinecke's avatar
Martin Reinecke committed
221
222
223
224
225
226
227
228
229
class _OpProd(Operator):
    def __init__(self, op1, op2):
        from ..sugar import domain_union
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = op1.target
        if op1.target != op2.target:
            raise ValueError("target mismatch")
        self._op1 = op1
        self._op2 = op2
Martin Reinecke's avatar
Martin Reinecke committed
230

Martin Reinecke's avatar
Martin Reinecke committed
231
    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
232
233
        from ..linearization import Linearization
        from ..sugar import makeOp
234
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
235
        lin = isinstance(x, Linearization)
236
237
238
        v = x._val if lin else x
        v1 = v.extract(self._op1.domain)
        v2 = v.extract(self._op2.domain)
Martin Reinecke's avatar
Martin Reinecke committed
239
        if not lin:
240
            return self._op1(v1) * self._op2(v2)
241
242
243
        wm = x.want_metric
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
244
245
        op = (makeOp(lin1._val)(lin2._jac))._myadd(
            makeOp(lin2._val)(lin1._jac), False)
246
        return lin1.new(lin1._val*lin2._val, op(x.jac))
Martin Reinecke's avatar
Martin Reinecke committed
247

Philipp Arras's avatar
Philipp Arras committed
248
249
250
251
252
    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in (self._op1, self._op2))
        return "_OpProd:\n"+indent(subs)


Martin Reinecke's avatar
Martin Reinecke committed
253
254
class _OpSum(Operator):
    def __init__(self, op1, op2):
Philipp Arras's avatar
Philipp Arras committed
255
        from ..sugar import domain_union
Martin Reinecke's avatar
Martin Reinecke committed
256
257
258
259
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = domain_union((op1.target, op2.target))
        self._op1 = op1
        self._op2 = op2
Philipp Arras's avatar
Philipp Arras committed
260
261

    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
262
        from ..linearization import Linearization
263
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
264
265
266
267
        lin = isinstance(x, Linearization)
        v = x._val if lin else x
        v1 = v.extract(self._op1.domain)
        v2 = v.extract(self._op2.domain)
Philipp Arras's avatar
Philipp Arras committed
268
        res = None
Martin Reinecke's avatar
Martin Reinecke committed
269
270
        if not lin:
            return self._op1(v1).unite(self._op2(v2))
271
272
273
        wm = x.want_metric
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
274
        op = lin1._jac._myadd(lin2._jac, False)
Martin Reinecke's avatar
bug fix  
Martin Reinecke committed
275
        res = lin1.new(lin1._val.unite(lin2._val), op(x.jac))
Martin Reinecke's avatar
Martin Reinecke committed
276
277
        if lin1._metric is not None and lin2._metric is not None:
            res = res.add_metric(lin1._metric + lin2._metric)
Philipp Arras's avatar
Philipp Arras committed
278
        return res
Philipp Arras's avatar
Philipp Arras committed
279
280
281
282

    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in (self._op1, self._op2))
        return "_OpSum:\n"+indent(subs)