test_nifty_spaces.py 59.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# -*- coding: utf-8 -*-

from numpy.testing import assert_equal,\
    assert_almost_equal,\
    assert_raises

from nose_parameterized import parameterized
import unittest
import itertools
import numpy as np

from nifty import space,\
13
14
15
16
    point_space,\
    rg_space,\
    field,\
    distributed_data_object
17
18
19
20

from nifty.nifty_paradict import space_paradict
from nifty.nifty_core import POINT_DISTRIBUTION_STRATEGIES

21
from nifty.rg.nifty_rg import RG_DISTRIBUTION_STRATEGIES,\
Ultima's avatar
Ultima committed
22
                              gc as RG_GC
Ultima's avatar
Ultima committed
23
from nifty.lm.nifty_lm import LM_DISTRIBUTION_STRATEGIES,\
Ultima's avatar
Ultima committed
24
25
                              GL_DISTRIBUTION_STRATEGIES,\
                              HP_DISTRIBUTION_STRATEGIES
Ultima's avatar
Ultima committed
26
from nifty.nifty_power_indices import power_indices
27
from nifty.nifty_utilities import _hermitianize_inverter as \
Ultima's avatar
Ultima committed
28
                                                        hermitianize_inverter
29

30
31
from nifty.operators.nifty_operators import power_operator

Ultima's avatar
Ultima committed
32
33
available = []
try:
34
    from nifty import lm_space
Ultima's avatar
Ultima committed
35
36
37
38
39
except ImportError:
    pass
else:
    available += ['lm_space']
try:
40
    from nifty import gl_space
Ultima's avatar
Ultima committed
41
42
43
44
45
except ImportError:
    pass
else:
    available += ['gl_space']
try:
46
    from nifty import hp_space
Ultima's avatar
Ultima committed
47
48
49
50
51
52
except ImportError:
    pass
else:
    available += ['hp_space']


53

Ultima's avatar
Ultima committed
54
###############################################################################
55

56
57
58
59
60
61
62
63
64
def custom_name_func(testcase_func, param_num, param):
    return "%s_%s" % (
        testcase_func.__name__,
        parameterized.to_safe_name("_".join(str(x) for x in param.args)),
    )

###############################################################################
###############################################################################

Ultima's avatar
Ultima committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
all_point_datatypes = [np.dtype('bool'),
                       np.dtype('int16'),
                       np.dtype('int32'),
                       np.dtype('int64'),
                       np.dtype('float32'),
                       np.dtype('float64'),
                       np.dtype('complex64'),
                       np.dtype('complex128')]

all_lm_datatypes = [np.dtype('complex64'),
                    np.dtype('complex128')]

all_gl_datatypes = [np.dtype('float64'),
                    np.dtype('float128')]

all_hp_datatypes = [np.dtype('float64')]
81
82
83

###############################################################################

Ultima's avatar
Ultima committed
84
DATAMODELS = {}
85
86
87
88
89
DATAMODELS['point_space'] = POINT_DISTRIBUTION_STRATEGIES
DATAMODELS['rg_space'] = RG_DISTRIBUTION_STRATEGIES
DATAMODELS['lm_space'] = LM_DISTRIBUTION_STRATEGIES
DATAMODELS['gl_space'] = GL_DISTRIBUTION_STRATEGIES
DATAMODELS['hp_space'] = HP_DISTRIBUTION_STRATEGIES
90
91
92

###############################################################################

93
94
95
96
97
98
99
fft_modules = []
for name in ['gfft', 'gfft_dummy', 'pyfftw']:
    if RG_GC.validQ('fft_module', name):
        fft_modules += [name]

###############################################################################

Ultima's avatar
Ultima committed
100
101
102
103
104
105
106
107
all_spaces = ['space', 'point_space', 'rg_space']
if 'lm_space' in available:
    all_spaces += ['lm_space']
if 'gl_space' in available:
    all_spaces += ['gl_space']
if 'hp_space' in available:
    all_spaces += ['hp_space']

108

Ultima's avatar
Ultima committed
109
110
111
112
113
114
115
point_like_spaces = ['point_space', 'rg_space']
if 'lm_space' in available:
    point_like_spaces += ['lm_space']
if 'gl_space' in available:
    point_like_spaces += ['gl_space']
if 'hp_space' in available:
    point_like_spaces += ['hp_space']
116

Ultima's avatar
Ultima committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
###############################################################################

np_spaces = point_like_spaces
d2o_spaces = []
if POINT_DISTRIBUTION_STRATEGIES != []:
    d2o_spaces += ['point_space']
if RG_DISTRIBUTION_STRATEGIES != []:
    d2o_spaces += ['rg_space']
if LM_DISTRIBUTION_STRATEGIES != []:
    d2o_spaces += ['lm_space']
if GL_DISTRIBUTION_STRATEGIES != []:
    d2o_spaces += ['gl_space']
if HP_DISTRIBUTION_STRATEGIES != []:
    d2o_spaces += ['hp_space']


unary_operations = ['pos', 'neg', 'abs', 'real', 'imag', 'nanmin', 'amin',
                    'nanmax', 'amax', 'median', 'mean', 'std', 'var', 'argmin',
csongor's avatar
csongor committed
135
136
137
                    'argmin_nonflat', 'argmax', 'argmax_nonflat', 'conjugate',
                    'sum', 'prod', 'unique', 'copy', 'copy_empty', 'isnan',
                    'isinf', 'isfinite', 'nan_to_num', 'all', 'any', 'None']
Ultima's avatar
Ultima committed
138
139
140
141

binary_operations = ['add', 'radd', 'iadd', 'sub', 'rsub', 'isub', 'mul',
                     'rmul', 'imul', 'div', 'rdiv', 'idiv', 'pow', 'rpow',
                     'ipow', 'ne', 'lt', 'le', 'eq', 'ge', 'gt', 'None']
142
143
144

###############################################################################

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
fft_test_data = np.array(
    [[0.38405405 + 0.32460996j, 0.02718878 + 0.08326207j,
      0.78792080 + 0.81192595j, 0.17535687 + 0.68054781j,
      0.93044845 + 0.71942995j, 0.21179999 + 0.00637665j],
     [0.10905553 + 0.3027462j, 0.37361237 + 0.68434316j,
      0.94070232 + 0.34129582j, 0.04658034 + 0.4575192j,
      0.45057929 + 0.64297612j, 0.01007361 + 0.24953504j],
     [0.39579662 + 0.70881906j, 0.01614435 + 0.82603832j,
      0.84036344 + 0.50321592j, 0.87699553 + 0.40337862j,
      0.11816016 + 0.43332373j, 0.76627757 + 0.66327959j],
     [0.77272335 + 0.18277367j, 0.93341953 + 0.58105518j,
      0.27227913 + 0.17458168j, 0.70204032 + 0.81397425j,
      0.12422993 + 0.19215286j, 0.30897158 + 0.47364969j],
     [0.24702012 + 0.54534373j, 0.55206013 + 0.98406613j,
      0.57408167 + 0.55685406j, 0.87991341 + 0.52534323j,
      0.93912604 + 0.97186519j, 0.77778942 + 0.45812051j],
     [0.79367868 + 0.48149411j, 0.42484378 + 0.74870011j,
      0.79611264 + 0.50926774j, 0.35372794 + 0.10468412j,
      0.46140736 + 0.09449825j, 0.82044644 + 0.95992843j]])

###############################################################################


168
169
170
171
172
def generate_space(name):
    space_dict = {'space': space(),
                  'point_space': point_space(10),
                  'rg_space': rg_space((8, 8)),
                  }
Ultima's avatar
Ultima committed
173
174
175
176
177
178
179
    if 'lm_space' in available:
        space_dict['lm_space'] = lm_space(mmax=11, lmax=11)
    if 'hp_space' in available:
        space_dict['hp_space'] = hp_space(8)
    if 'gl_space' in available:
        space_dict['gl_space'] = gl_space(nlat=10, nlon=19)

180
181
182
    return space_dict[name]


csongor's avatar
csongor committed
183
def generate_space_with_size(name, num):
184
    space_dict = {'space': space(),
csongor's avatar
csongor committed
185
186
                  'point_space': point_space(num),
                  'rg_space': rg_space((num, num)),
187
188
                  }
    if 'lm_space' in available:
csongor's avatar
csongor committed
189
        space_dict['lm_space'] = lm_space(mmax=num, lmax=num)
190
    if 'hp_space' in available:
csongor's avatar
csongor committed
191
        space_dict['hp_space'] = hp_space(num)
192
    if 'gl_space' in available:
csongor's avatar
csongor committed
193
        space_dict['gl_space'] = gl_space(nlat=num, nlon=num)
194
195
196

    return space_dict[name]

Ultima's avatar
Ultima committed
197
198
199
200
201
202
def generate_data(space):
    a = np.arange(space.get_dim()).reshape(space.get_shape())
    data = space.cast(a)
    return data


203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def check_equality(space, data1, data2):
    return space.unary_operation(space.binary_operation(data1, data2, 'eq'),
                                 'all')


def check_almost_equality(space, data1, data2, integers=7):
    return space.unary_operation(
        space.binary_operation(
            space.unary_operation(
                space.binary_operation(data1, data2, 'sub'),
                'abs'),
            10.**(-1. * integers), 'le'),
        'all')


def flip(space, data):
    return space.unary_operation(hermitianize_inverter(data), 'conjugate')

Ultima's avatar
Ultima committed
221

222
223
224
225
###############################################################################
###############################################################################

class Test_Common_Space_Features(unittest.TestCase):
226

227
228
229
230
231
232
233
234
235
236
    @parameterized.expand(all_spaces,
                          testcase_func_name=custom_name_func)
    def test_successfull_init_and_attributes(self, name):
        s = generate_space(name)
        assert(isinstance(s.paradict, space_paradict))

    @parameterized.expand(all_spaces,
                          testcase_func_name=custom_name_func)
    def test_successfull_init_and_methods(self, name):
        s = generate_space(name)
Ultima's avatar
Ultima committed
237
        assert(callable(s.__hash__))
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        assert(callable(s.__eq__))
        assert(callable(s.__ne__))
        assert(callable(s.__len__))
        assert(callable(s.copy))
        assert(callable(s.getitem))
        assert(callable(s.setitem))
        assert(callable(s.apply_scalar_function))
        assert(callable(s.unary_operation))
        assert(callable(s.binary_operation))
        assert(callable(s.get_shape))
        assert(callable(s.get_dim))
        assert(callable(s.get_dof))
        assert(callable(s.cast))
        assert(callable(s.enforce_power))
        assert(callable(s.check_codomain))
        assert(callable(s.get_codomain))
        assert(callable(s.get_random_values))
        assert(callable(s.calc_weight))
        assert(callable(s.get_weight))
Ultima's avatar
Ultima committed
257
        assert(callable(s.calc_norm))
258
259
260
261
262
263
264
265
266
267
        assert(callable(s.calc_dot))
        assert(callable(s.calc_transform))
        assert(callable(s.calc_smooth))
        assert(callable(s.calc_power))
        assert(callable(s.calc_real_Q))
        assert(callable(s.calc_bincount))
        assert(callable(s.get_plot))
        assert(callable(s.__repr__))
        assert(callable(s.__str__))

Ultima's avatar
Ultima committed
268
269
270
        assert(s.check_codomain(None) == False)
        assert(isinstance(repr(s), str))

Ultima's avatar
Ultima committed
271
272
273
274
275
276
277
    @parameterized.expand(all_spaces,
                          testcase_func_name=custom_name_func)
    def test_successfull_hashing(self, name):
        s1 = generate_space(name)
        s2 = generate_space(name)
        assert(s1.__hash__() == s2.__hash__())

278
279
280
281

###############################################################################
###############################################################################

Ultima's avatar
Ultima committed
282
class Test_Common_Point_Like_Space_Interface(unittest.TestCase):
283
284
285
286
287
288
289
290
291
292

    @parameterized.expand(point_like_spaces,
                          testcase_func_name=custom_name_func)
    def test_successfull_init_and_attributes(self, name):
        s = generate_space(name)

        assert(isinstance(s.paradict, space_paradict))
        assert(isinstance(s.paradict, space_paradict))
        assert(isinstance(s.dtype, np.dtype))
        assert(isinstance(s.discrete, bool))
Ultima's avatar
Ultima committed
293
#        assert(isinstance(s.harmonic, bool))
294
        assert(isinstance(s.distances, tuple))
Ultima's avatar
Ultima committed
295
296
297
        if hasattr(s, 'harmonic'):
            if s.harmonic:
                assert(isinstance(s.power_indices, power_indices))
298
299
300

    @parameterized.expand(point_like_spaces,
                          testcase_func_name=custom_name_func)
Ultima's avatar
Ultima committed
301
    def test_getters(self, name):
302
303
304
305
306
307
308
309
        s = generate_space(name)
        assert(isinstance(s.get_shape(), tuple))
        assert(isinstance(s.get_dim(), np.int))

        assert(isinstance(s.get_dof(), np.int))
        assert(isinstance(s.get_dof(split=True), tuple))
        assert_equal(s.get_dof(), np.prod(s.get_dof(split=True)))

Ultima's avatar
Ultima committed
310
311
312
        assert(isinstance(s.get_vol(), np.float))
        assert(isinstance(s.get_dof(split=True), tuple))

313
        assert(isinstance(s.get_meta_volume(), np.float))
csongor's avatar
csongor committed
314
        print(s.get_meta_volume(split=True), type(s.cast(1)))
315
316
317
318
        assert(isinstance(s.get_meta_volume(split=True), type(s.cast(1))))
        assert_almost_equal(
            s.get_meta_volume(), s.get_meta_volume(split=True).sum(), 2)

319
320
321
322
323
324
325
    @parameterized.expand(point_like_spaces,
                          testcase_func_name=custom_name_func)
    def test_copy(self, name):
        s = generate_space(name)
        t = s.copy()
        assert(s == t)
        assert(id(s) != id(t))
Ultima's avatar
Ultima committed
326

327
328
329
330

###############################################################################
###############################################################################

Ultima's avatar
Ultima committed
331
class Test_Point_Space(unittest.TestCase):
332
333
334

    @parameterized.expand(
        itertools.product([0, 1, 10],
csongor's avatar
csongor committed
335
                          all_point_datatypes),
336
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
337
338
    def test_successfull_init(self, num, dtype):
        p = point_space(num, dtype)
339
340
341
342
343
344
        assert_equal(p.paradict['num'], num)
        assert_equal(p.dtype, dtype)

        assert_equal(p.discrete, True)
        assert_equal(p.distances, (np.float(1.),))

Ultima's avatar
Ultima committed
345
346
###############################################################################

347
348
349
350
351
352
353
354
355
    def test_para(self):
        num = 10
        p = point_space(num)
        assert_equal(p.para[0], num)

        new_num = 15
        p.para = np.array([new_num])
        assert_equal(p.para[0], new_num)

Ultima's avatar
Ultima committed
356
357
###############################################################################

358
359
360
361
362
    def test_init_fail(self):
        assert_raises(ValueError, lambda: point_space(-5))
        assert_raises(ValueError, lambda: point_space((10, 10)))
        assert_raises(ValueError, lambda: point_space(10, np.uint))

Ultima's avatar
Ultima committed
363
364
365
###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
366
        itertools.product([0, 1, 10]),
Ultima's avatar
Ultima committed
367
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
368
369
    def test_apply_scalar_function(self, num):
        s = point_space(num)
Ultima's avatar
Ultima committed
370
371
        d = generate_data(s)
        t = s.apply_scalar_function(d, lambda x: x**2)
372
        assert(check_equality(s, d**2, t))
Ultima's avatar
Ultima committed
373
374
375
        assert(id(d) != id(t))

        t = s.apply_scalar_function(d, lambda x: x**2, inplace=True)
376
        assert(check_equality(s, d, t))
Ultima's avatar
Ultima committed
377
378
379
380
381
382
        assert(id(d) == id(t))

###############################################################################

    @parameterized.expand(
        itertools.product([1, 10],
csongor's avatar
csongor committed
383
                          unary_operations),
Ultima's avatar
Ultima committed
384
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
385
386
    def test_unary_operations(self, num, op):
        s = point_space(num)
Ultima's avatar
Ultima committed
387
388
389
390
391
392
        d = s.cast(np.arange(num))
        s.unary_operation(d, op)
        # TODO: Implement value verification

    @parameterized.expand(
        itertools.product([1, 10],
csongor's avatar
csongor committed
393
                          binary_operations),
Ultima's avatar
Ultima committed
394
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
395
396
    def test_binary_operations(self, num, op):
        s = point_space(num)
Ultima's avatar
Ultima committed
397
398
399
400
401
402
403
404
        d = s.cast(np.arange(num))
        d2 = d[::-1]
        s.binary_operation(d, d2, op)
        # TODO: Implement value verification

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
405
        itertools.product(all_point_datatypes),
Ultima's avatar
Ultima committed
406
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
407
    def test_get_shape_dim(self, dtype):
Ultima's avatar
Ultima committed
408
        num = 10
csongor's avatar
csongor committed
409
        s = point_space(num, dtype)
Ultima's avatar
Ultima committed
410
411
412
413
414
415
416

        assert_equal(s.get_shape(), (num,))
        assert_equal(s.get_dim(), num)

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
417
        itertools.product(all_point_datatypes),
Ultima's avatar
Ultima committed
418
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
419
    def test_get_shape_dof(self, dtype):
Ultima's avatar
Ultima committed
420
        num = 10
csongor's avatar
csongor committed
421
        s = point_space(num, dtype)
Ultima's avatar
Ultima committed
422
423

        if issubclass(dtype.type, np.complexfloating):
424
425
            assert_equal(s.get_dof(), 2 * num)
            assert_equal(s.get_dof(split=True), (2 * num,))
Ultima's avatar
Ultima committed
426
427
428
429
430
431
432
        else:
            assert_equal(s.get_dof(), num)
            assert_equal(s.get_dof(split=True), (num,))

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
433
        itertools.product(all_point_datatypes),
Ultima's avatar
Ultima committed
434
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
435
    def test_get_shape_vol(self, dtype):
Ultima's avatar
Ultima committed
436
        num = 10
csongor's avatar
csongor committed
437
        s = point_space(num, dtype)
Ultima's avatar
Ultima committed
438
439
440
441
442
443
444

        assert_equal(s.get_vol(), 1.)
        assert_equal(s.get_vol(split=True), (1.,))

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
445
        itertools.product(all_point_datatypes),
Ultima's avatar
Ultima committed
446
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
447
    def test_get_shape_metavolume(self, dtype):
Ultima's avatar
Ultima committed
448
        num = 10
csongor's avatar
csongor committed
449
        s = point_space(num, dtype)
Ultima's avatar
Ultima committed
450
451

        assert_equal(s.get_meta_volume(), 10.)
452
        assert(check_equality(s, s.get_meta_volume(split=True), s.cast(1)))
Ultima's avatar
Ultima committed
453
454
455
456

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
457
        itertools.product(all_point_datatypes),
Ultima's avatar
Ultima committed
458
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
459
    def test_cast_from_scalar(self, dtype):
Ultima's avatar
Ultima committed
460
461
        num = 10
        scalar = 4
csongor's avatar
csongor committed
462
463
464
465
        s = point_space(num, dtype)
        d = distributed_data_object(scalar,
                                    global_shape=(num,),
                                    dtype=dtype)
Ultima's avatar
Ultima committed
466
467

        casted_scalar = s.cast(scalar)
468
        assert(check_equality(s, casted_scalar, d))
csongor's avatar
csongor committed
469
        assert(d.equal(casted_scalar))
Ultima's avatar
Ultima committed
470
471
472
473

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
474
        itertools.product(all_point_datatypes),
Ultima's avatar
Ultima committed
475
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
476
    def test_cast_from_field(self, dtype):
Ultima's avatar
Ultima committed
477
478
        num = 10
        a = np.arange(num,).astype(dtype)
csongor's avatar
csongor committed
479
        s = point_space(num, dtype)
Ultima's avatar
Ultima committed
480
481
        f = field(s, val=a)

csongor's avatar
csongor committed
482
        d = distributed_data_object(a, dtype=dtype)
Ultima's avatar
Ultima committed
483
484

        casted_f = s.cast(f)
485
        assert(check_equality(s, casted_f, d))
csongor's avatar
csongor committed
486
        assert(d.equal(casted_f))
Ultima's avatar
Ultima committed
487
488
489
490
491
492

###############################################################################

    @parameterized.expand(
        itertools.product(all_point_datatypes,
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
493
    def test_cast_from_ndarray(self, dtype):
Ultima's avatar
Ultima committed
494
495
        num = 10
        a = np.arange(num,)
csongor's avatar
csongor committed
496
        s = point_space(num, dtype)
Ultima's avatar
Ultima committed
497

csongor's avatar
csongor committed
498
        d = distributed_data_object(a, dtype=dtype)
Ultima's avatar
Ultima committed
499
500

        casted_a = s.cast(a)
501
        assert(check_equality(s, casted_a, d))
csongor's avatar
csongor committed
502
        assert(d.equal(casted_a))
Ultima's avatar
Ultima committed
503
504
505
506

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
507
        itertools.product(all_point_datatypes),
Ultima's avatar
Ultima committed
508
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
509
    def test_cast_from_d2o(self, dtype):
Ultima's avatar
Ultima committed
510
511
512
        num = 10
        pre_a = np.arange(num,)
        a = distributed_data_object(pre_a)
csongor's avatar
csongor committed
513
        s = point_space(num, dtype)
Ultima's avatar
Ultima committed
514

csongor's avatar
csongor committed
515
        d = distributed_data_object(a, dtype=dtype)
Ultima's avatar
Ultima committed
516
517

        casted_a = s.cast(a)
518
        assert(check_equality(s, casted_a, d))
csongor's avatar
csongor committed
519
        assert(d.equal(casted_a))
Ultima's avatar
Ultima committed
520
521
522
523
524
525


###############################################################################

    def test_raise_on_not_implementable_methods(self):
        s = point_space(10)
526
527
528
529
        assert_raises(AttributeError, lambda: s.enforce_power(1))
        assert_raises(AttributeError, lambda: s.calc_smooth(1))
        assert_raises(AttributeError, lambda: s.calc_power(1))
        assert_raises(AttributeError, lambda: s.calc_transform(1))
Ultima's avatar
Ultima committed
530
531
532
533

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
534
535
536
        [[10, np.dtype('float64')],
         [10, np.dtype('float32')],
         [12, np.dtype('float64')]],
Ultima's avatar
Ultima committed
537
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
538
539
    def test_get_check_codomain(self, num, dtype):
        s = point_space(10, dtype=np.dtype('float64'))
Ultima's avatar
Ultima committed
540
541
542
543

        t = s.get_codomain()
        assert(s.check_codomain(t))

csongor's avatar
csongor committed
544
        t_bad = point_space(num, dtype=dtype)
Ultima's avatar
Ultima committed
545
546
547
548
549
550
551
        assert(s.check_codomain(t_bad) == False)

        assert(s.check_codomain(None) == False)

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
552
        itertools.product(all_point_datatypes),
Ultima's avatar
Ultima committed
553
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
554
    def test_get_random_values(self, dtype):
555
556
557
        if dtype == np.dtype('bool'):
            return None

Ultima's avatar
Ultima committed
558
        num = 100000
csongor's avatar
csongor committed
559
        s = point_space(num, dtype)
Ultima's avatar
Ultima committed
560
561

        pm = s.get_random_values(random='pm1')
562
        assert(abs(s.unary_operation(pm, op='mean')) < 0.1)
Ultima's avatar
Ultima committed
563

564
565
566
567
568
        std = 4
        mean = 5
        gau = s.get_random_values(random='gau', mean=mean, std=std)
        assert(abs(gau.std() - std) / std < 0.2)
        assert(abs(gau.mean() - mean) / mean < 0.2)
Ultima's avatar
Ultima committed
569

570
571
572
573
574
        vmin = -4
        vmax = 10
        uni = s.get_random_values(random='uni', vmin=vmin, vmax=vmax)
        assert(abs(uni.real.mean() - 3.) / 3. < 0.1)
        assert(abs(uni.real.std() - 4.) / 4. < 0.1)
Ultima's avatar
Ultima committed
575

576
###############################################################################
Ultima's avatar
Ultima committed
577

578
    @parameterized.expand(
csongor's avatar
csongor committed
579
        itertools.product(all_point_datatypes),
580
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
581
    def test_get_calc_weight(self, dtype):
582
        num = 100
csongor's avatar
csongor committed
583
        s = point_space(num, dtype)
584
585
586
587
        weight = 1
        assert_equal(s.get_weight(), weight)
        assert_equal(s.get_weight(power=4), weight)
        assert_equal(s.get_weight(power=4, split=True), (weight,))
Ultima's avatar
Ultima committed
588

589
590
        data = s.cast(2)
        assert(check_equality(s, data, s.calc_weight(data)))
Ultima's avatar
Ultima committed
591

592
593
594
###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
595
        itertools.product(all_point_datatypes),
596
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
597
    def test_calc_dot(self, dtype):
598
        num = 100
csongor's avatar
csongor committed
599
        s = point_space(num, dtype)
600
601
602
603
604
605
        if dtype == np.dtype('bool'):
            assert_equal(s.calc_dot(1, 1), 1)
        else:
            assert_equal(s.calc_dot(1, 1), num)
            assert_equal(s.calc_dot(np.arange(num), 1), num * (num - 1.) / 2.)

Ultima's avatar
Ultima committed
606
607
608
###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
609
        itertools.product(),
Ultima's avatar
Ultima committed
610
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
611
    def test_calc_norm(self):
Ultima's avatar
Ultima committed
612
        num = 10
csongor's avatar
csongor committed
613
        s = point_space(num)
Ultima's avatar
Ultima committed
614
615
616
617
        d = s.cast(np.arange(num))
        assert_almost_equal(s.calc_norm(d), 16.881943016134134)
        assert_almost_equal(s.calc_norm(d, q=3), 12.651489979526238)

618
###############################################################################
Ultima's avatar
Ultima committed
619

620
    @parameterized.expand(
csongor's avatar
csongor committed
621
        itertools.product(),
622
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
623
    def test_calc_real_Q(self):
624
        num = 100
csongor's avatar
csongor committed
625
        s = point_space(num, dtype=np.complex)
626
627
628
629
        real_data = s.cast(1)
        assert(s.calc_real_Q(real_data))
        complex_data = s.cast(1 + 1j)
        assert(s.calc_real_Q(complex_data) == False)
Ultima's avatar
Ultima committed
630

631
###############################################################################
Ultima's avatar
Ultima committed
632

633
    @parameterized.expand(
csongor's avatar
csongor committed
634
        itertools.product(),
635
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
636
    def test_calc_bincount(self):
637
        num = 10
csongor's avatar
csongor committed
638
        s = point_space(num, dtype=np.int)
639
640
641
642
643
644
        data = s.cast(np.array([1, 1, 2, 0, 5, 8, 4, 5, 4, 5]))
        weights = np.arange(10) / 10.
        assert_equal(s.calc_bincount(data),
                     np.array([1, 2, 1, 0, 2, 3, 0, 0, 1]))
        assert_equal(s.calc_bincount(data, weights=weights),
                     np.array([0.3, 0.1, 0.2, 0, 1.4, 2, 0, 0, 0.5]))
Ultima's avatar
Ultima committed
645
646


647
648
###############################################################################
###############################################################################
Ultima's avatar
Ultima committed
649

650
class Test_RG_Space(unittest.TestCase):
651

652
653
654
655
656
657
    @parameterized.expand(
        itertools.product([(1,), (10, 10)],
                          [0, 1, 2],
                          [True, False],
                          [None, 0.5],
                          [True, False],
csongor's avatar
csongor committed
658
                          fft_modules),
659
660
        testcase_func_name=custom_name_func)
    def test_successfull_init(self, shape, complexity, zerocenter, distances,
csongor's avatar
csongor committed
661
                              harmonic, fft_module):
662
663
664
665
666
        x = rg_space(shape,
                     complexity=complexity,
                     zerocenter=zerocenter,
                     distances=distances,
                     harmonic=harmonic,
csongor's avatar
csongor committed
667
                     fft_module=fft_module)
Ultima's avatar
Ultima committed
668
        assert(isinstance(x.harmonic, bool))
669
670
671
672
673
674
675
        assert_equal(x.get_shape(), shape)
        assert_equal(x.dtype,
                     np.dtype('float64') if complexity == 0 else
                     np.dtype('complex128'))
        assert_equal(x.distances,
                     1. / np.array(shape) if distances is None else
                     np.ones(len(shape)) * distances)
676

677
###############################################################################
678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    def test_para(self):
        shape = (10, 10)
        zerocenter = True
        complexity = 2
        x = rg_space(shape, zerocenter=zerocenter, complexity=complexity)
        assert_equal(x.para, np.array([10, 10, 2, 1, 1]))

        new_para = np.array([6, 6, 1, 0, 1])
        x.para = new_para
        assert_equal(x.para, new_para)

###############################################################################

    def test_init_fail(self):
        assert_raises(ValueError, lambda: rg_space((-3, 10)))
        assert_raises(ValueError, lambda: rg_space((10, 10), complexity=3))
        assert_raises(ValueError, lambda: rg_space((10, 10),
                                                   distances=[1, 1, 1]))
        assert_raises(ValueError, lambda: rg_space((10, 10),
                                                   zerocenter=[1, 1, 1]))

###############################################################################

    @parameterized.expand(
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
704
    def test_cast_to_hermitian(self):
705
706
707
708
709
710
711
712
713
714
715
        shape = (10, 10)
        x = rg_space(shape, complexity=1)
        data = np.random.random(shape) + np.random.random(shape) * 1j
        casted_data = x.cast(data)
        flipped_data = flip(x, casted_data)
        assert(check_equality(x, flipped_data, casted_data))

###############################################################################

    @parameterized.expand(
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
716
    def test_enforce_power(self):
717
        shape = (6, 6)
csongor's avatar
csongor committed
718
        x = rg_space(shape)
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

        assert_equal(x.enforce_power(2),
                     np.array([2., 2., 2., 2., 2., 2., 2., 2., 2., 2.]))
        assert_almost_equal(
            x.enforce_power(lambda x: 42 / (1 + x)**5),
            np.array([4.20000000e+01, 1.31250000e+00, 5.12118970e-01,
                      1.72839506e-01, 1.18348051e-01, 5.10678257e-02,
                      4.10156250e-02, 3.36197167e-02, 2.02694134e-02,
                      1.06047106e-02]))

###############################################################################

    @parameterized.expand(
        itertools.product([0, 1, 2],
                          [None, 1, 10],
                          [False, True]),
        testcase_func_name=custom_name_func)
    def test_get_check_codomain(self, complexity, distances, harmonic):
        shape = (6, 6)
        x = rg_space(shape, complexity=complexity, distances=distances,
                     harmonic=harmonic)
        y = x.get_codomain()
        assert(x.check_codomain(y))
        assert(y.check_codomain(x))

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
747
        itertools.product([True],
748
749
                          ['pyfftw']),
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
750
751
    def test_get_random_values(self, harmonic, ):
        x = rg_space((4, 4), complexity=1, harmonic=harmonic)
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777

        # pm1
        data = x.get_random_values(random='pm1')
        flipped_data = flip(x, data)
        assert(check_almost_equality(x, data, flipped_data))

        # gau
        data = x.get_random_values(random='gau', mean=4 + 3j, std=2)
        flipped_data = flip(x, data)
        assert(check_almost_equality(x, data, flipped_data))

        # uni
        data = x.get_random_values(random='uni', vmin=-2, vmax=4)
        flipped_data = flip(x, data)
        assert(check_almost_equality(x, data, flipped_data))

        # syn
        data = x.get_random_values(random='syn',
                                   spec=lambda x: 42 / (1 + x)**3)
        flipped_data = flip(x, data)
        assert(check_almost_equality(x, data, flipped_data))

###############################################################################

    @parameterized.expand(
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
778
    def test_calc_dot(self):
779
780
781
782
783
784
785
786
787
788
        shape = (8, 8)
        a = np.arange(np.prod(shape)).reshape(shape)
        x = rg_space(shape)
        assert_equal(x.calc_dot(a, a), 85344)
        assert_equal(x.calc_dot(a, 1), 2016)
        assert_equal(x.calc_dot(1, a), 2016)

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
789
        itertools.product([0, 1]),
790
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
791
    def test_calc_transform_general(self, complexity):
792
793
794
        data = fft_test_data.copy()
        shape = data.shape

csongor's avatar
csongor committed
795
        x = rg_space(shape, complexity=complexity)
796
797
798
799
800
801
802
        data = fft_test_data.copy()
        data = x.cast(data)
        check_equality(x, data, x.calc_transform(x.calc_transform(data)))

###############################################################################

    @parameterized.expand(
csongor's avatar
csongor committed
803
        itertools.product(fft_modules),
804
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
805
    def test_calc_transform_explicit(self, fft_module):
806
807
808
809
        data = fft_test_data.copy()
        shape = data.shape

        x = rg_space(shape, complexity=2, zerocenter=False,
csongor's avatar
csongor committed
810
                     fft_module=fft_module)
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
        casted_data = x.cast(data)
        assert(check_almost_equality(x, x.calc_transform(casted_data),
                                     np.array([[0.50541615 + 0.50558267j, -0.01458536 - 0.01646137j,
                                                0.01649006 + 0.01990988j, 0.04668049 - 0.03351745j,
                                                -0.04382765 - 0.06455639j, -0.05978564 + 0.01334044j],
                                               [-0.05347464 + 0.04233343j, -0.05167177 + 0.00643947j,
                                                -0.01995970 - 0.01168872j, 0.10653817 + 0.03885947j,
                                                -0.03298075 - 0.00374715j, 0.00622585 - 0.01037453j],
                                               [-0.01128964 - 0.02424692j, -0.03347793 - 0.0358814j,
                                                -0.03924164 - 0.01978305j, 0.03821242 - 0.00435542j,
                                                0.07533170 + 0.14590143j, -0.01493027 - 0.02664675j],
                                               [0.02238926 + 0.06140625j, -0.06211313 + 0.03317753j,
                                                0.01519073 + 0.02842563j, 0.00517758 + 0.08601604j,
                                                -0.02246912 - 0.01942764j, -0.06627311 - 0.08763801j],
                                               [-0.02492378 - 0.06097411j, 0.06365649 - 0.09346585j,
                                                0.05031486 + 0.00858656j, -0.00881969 + 0.01842357j,
                                                -0.01972641 - 0.00994365j, 0.05289453 - 0.06822038j],
                                               [-0.01865586 - 0.08640926j, 0.03414096 - 0.02605602j,
                                                -0.09492552 + 0.01306734j, 0.09355730 + 0.07553701j,
                                                -0.02395259 - 0.02185743j, -0.03107832 - 0.04714527j]])))

        x = rg_space(shape, complexity=2, zerocenter=True,
csongor's avatar
csongor committed
833
                     fft_module=fft_module)
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
        casted_data = x.cast(data)
        assert(check_almost_equality(x, x.calc_transform(casted_data),
                                     np.array([[0.00517758 + 0.08601604j, 0.02246912 + 0.01942764j,
                                                -0.06627311 - 0.08763801j, -0.02238926 - 0.06140625j,
                                                -0.06211313 + 0.03317753j, -0.01519073 - 0.02842563j],
                                               [0.00881969 - 0.01842357j, -0.01972641 - 0.00994365j,
                                                -0.05289453 + 0.06822038j, -0.02492378 - 0.06097411j,
                                                -0.06365649 + 0.09346585j, 0.05031486 + 0.00858656j],
                                               [0.09355730 + 0.07553701j, 0.02395259 + 0.02185743j,
                                                -0.03107832 - 0.04714527j, 0.01865586 + 0.08640926j,
                                                0.03414096 - 0.02605602j, 0.09492552 - 0.01306734j],
                                               [-0.04668049 + 0.03351745j, -0.04382765 - 0.06455639j,
                                                0.05978564 - 0.01334044j, 0.50541615 + 0.50558267j,
                                                0.01458536 + 0.01646137j, 0.01649006 + 0.01990988j],
                                               [0.10653817 + 0.03885947j, 0.03298075 + 0.00374715j,
                                                0.00622585 - 0.01037453j, 0.05347464 - 0.04233343j,
                                                -0.05167177 + 0.00643947j, 0.01995970 + 0.01168872j],
                                               [-0.03821242 + 0.00435542j, 0.07533170 + 0.14590143j,
                                                0.01493027 + 0.02664675j, -0.01128964 - 0.02424692j,
                                                0.03347793 + 0.0358814j, -0.03924164 - 0.01978305j]])))

        x = rg_space(shape, complexity=2, zerocenter=[True, False],
csongor's avatar
csongor committed
856
                     fft_module=fft_module)
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
        casted_data = x.cast(data)
        assert(check_almost_equality(x, x.calc_transform(casted_data),
                                     np.array([[-0.02238926 - 0.06140625j, 0.06211313 - 0.03317753j,
                                                -0.01519073 - 0.02842563j, -0.00517758 - 0.08601604j,
                                                0.02246912 + 0.01942764j, 0.06627311 + 0.08763801j],
                                               [-0.02492378 - 0.06097411j, 0.06365649 - 0.09346585j,
                                                0.05031486 + 0.00858656j, -0.00881969 + 0.01842357j,
                                                -0.01972641 - 0.00994365j, 0.05289453 - 0.06822038j],
                                               [0.01865586 + 0.08640926j, -0.03414096 + 0.02605602j,
                                                0.09492552 - 0.01306734j, -0.09355730 - 0.07553701j,
                                                0.02395259 + 0.02185743j, 0.03107832 + 0.04714527j],
                                               [0.50541615 + 0.50558267j, -0.01458536 - 0.01646137j,
                                                0.01649006 + 0.01990988j, 0.04668049 - 0.03351745j,
                                                -0.04382765 - 0.06455639j, -0.05978564 + 0.01334044j],
                                               [0.05347464 - 0.04233343j, 0.05167177 - 0.00643947j,
                                                0.01995970 + 0.01168872j, -0.10653817 - 0.03885947j,
                                                0.03298075 + 0.00374715j, -0.00622585 + 0.01037453j],
                                               [-0.01128964 - 0.02424692j, -0.03347793 - 0.0358814j,
                                                -0.03924164 - 0.01978305j, 0.03821242 - 0.00435542j,
                                                0.07533170 + 0.14590143j, -0.01493027 - 0.02664675j]])))

        x = rg_space(shape, complexity=2, zerocenter=[True, False],
csongor's avatar
csongor committed
879
                     fft_module=fft_module)
880
881
        y = rg_space(shape, complexity=2, zerocenter=[False, True],
                     distances=[1, 1], harmonic=True,
csongor's avatar
csongor committed
882
                     fft_module=fft_module)
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
        casted_data = x.cast(data)
        assert(check_almost_equality(x, x.calc_transform(casted_data,
                                                         codomain=y),
                                     np.array([[0.04668049 - 0.03351745j, -0.04382765 - 0.06455639j,
                                                -0.05978564 + 0.01334044j, 0.50541615 + 0.50558267j,
                                                -0.01458536 - 0.01646137j, 0.01649006 + 0.01990988j],
                                               [-0.10653817 - 0.03885947j, 0.03298075 + 0.00374715j,
                                                -0.00622585 + 0.01037453j, 0.05347464 - 0.04233343j,
                                                0.05167177 - 0.00643947j, 0.01995970 + 0.01168872j],
                                               [0.03821242 - 0.00435542j, 0.07533170 + 0.14590143j,
                                                -0.01493027 - 0.02664675j, -0.01128964 - 0.02424692j,
                                                -0.03347793 - 0.0358814j, -0.03924164 - 0.01978305j],
                                               [-0.00517758 - 0.08601604j, 0.02246912 + 0.01942764j,
                                                0.06627311 + 0.08763801j, -0.02238926 - 0.06140625j,
                                                0.06211313 - 0.03317753j, -0.01519073 - 0.02842563j],
                                               [-0.00881969 + 0.01842357j, -0.01972641 - 0.00994365j,
                                                0.05289453 - 0.06822038j, -0.02492378 - 0.06097411j,
                                                0.06365649 - 0.09346585j, 0.05031486 + 0.00858656j],
                                               [-0.09355730 - 0.07553701j, 0.02395259 + 0.02185743j,
                                                0.03107832 + 0.04714527j, 0.01865586 + 0.08640926j,
                                                -0.03414096 + 0.02605602j, 0.09492552 - 0.01306734j]])))

Ultima's avatar
Ultima committed
905
906
907
908
909
910
911
912
###############################################################################

    @parameterized.expand(
        itertools.product(fft_modules,
                          [(6, 6), (8, 8), (6, 8)],
                          [(True, True), (False, False),
                           (True, False), (False, True)],
                          [(True, True), (False, False),
csongor's avatar
csongor committed
913
                           (True, False), (False, True)]),
Ultima's avatar
Ultima committed
914
915
        testcase_func_name=custom_name_func)
    def test_calc_transform_variations(self, fft_module, shape, zerocenter_in,
csongor's avatar
csongor committed
916
                                       zerocenter_out):
Ultima's avatar
Ultima committed
917
918
        data = np.arange(np.prod(shape)).reshape(shape)
        x = rg_space(shape, complexity=2, zerocenter=zerocenter_in,
csongor's avatar
csongor committed
919
                     fft_module=fft_module)
Ultima's avatar
Ultima committed
920
921
922
923
924
925
926
927
928
929
930
931
932
        y = x.get_codomain()
        y.paradict['zerocenter'] = zerocenter_out

        casted_data = x.cast(data)
        x_result = x.calc_transform(casted_data, codomain=y)

        np_data = data.copy()
        np_data = np.fft.fftshift(np_data, axes=np.where(zerocenter_in)[0])
        np_data = np.fft.fftn(np_data)
        np_data = np.fft.fftshift(np_data, axes=np.where(zerocenter_out)[0])
        np_result = np_data/np.prod(shape)
        assert(check_almost_equality(x, x_result, np_result))

933
934
###############################################################################

csongor's avatar
csongor committed
935
936
    @parameterized.expand(testcase_func_name=custom_name_func)
    def test_calc_smooth(self):
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
        sigma = 0.01
        shape = (8, 8)
        a = np.arange(np.prod(shape)).reshape(shape)
        x = rg_space(shape)
        casted_a = x.cast(a)
        assert(check_almost_equality(x, x.calc_smooth(casted_a, sigma=sigma),
                                     np.array([[0.3869063,   1.33370382,   2.34906384,   3.3400879,
                                                4.34774552,   5.33876958,   6.3541296,   7.30092712],
                                               [7.96128648,   8.90808401,   9.92344403,  10.91446809,
                                                11.9221257,  12.91314976,  13.92850978,  14.87530731],
                                               [16.08416664,  17.03096417,  18.04632419,  19.03734824,
                                                20.04500586,  21.03602992,  22.05138994,  22.99818747],
                                               [24.01235911,  24.95915664,  25.97451666,  26.96554072,
                                                27.97319833,  28.96422239,  29.97958241,  30.92637994],
                                               [32.07362006,  33.02041759,  34.03577761,  35.02680167,
                                                36.03445928,  37.02548334,  38.04084336,  38.98764089],
                                               [40.00181253,  40.94861006,  41.96397008,  42.95499414,
                                                43.96265176,  44.95367581,  45.96903583,  46.91583336],
                                               [48.12469269,  49.07149022,  50.08685024,  51.0778743,
                                                52.08553191,  53.07655597,  54.09191599,  55.03871352],
                                               [55.69907288,  56.6458704,  57.66123042,  58.65225448,
                                                59.6599121,  60.65093616,  61.66629618,  62.6130937]])))

###############################################################################

csongor's avatar
csongor committed
962
963
    @parameterized.expand(testcase_func_name=custom_name_func)
    def test_calc_power(self):
964
965
966
967
968
969
970
971
        shape = (8, 8)
        a = np.arange(np.prod(shape)).reshape(shape)
        x = rg_space(shape)
        assert_almost_equal(x.calc_power(a),
                            np.array([992.25, 55.48097039, 0., 16.25,
                                      0., 0., 9.51902961, 0.,
                                      0., 8.125, 0., 0.,
                                      0., 0., 0.]))
Ultima's avatar
Ultima committed
972
973
974
975
976
977
978
979
980
981


###############################################################################
###############################################################################

class Test_Lm_Space(unittest.TestCase):

    @parameterized.expand(
        itertools.product([1, 17],
                          [None, 12, 17],
csongor's avatar
csongor committed
982
                          all_lm_datatypes),
Ultima's avatar
Ultima committed
983
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
984
985
    def test_successfull_init(self, lmax, mmax, dtype):
        # TODO Look at this
986
        if datamodel in ['not']:
csongor's avatar
csongor committed
987
            l = lm_space(lmax, mmax=mmax, dtype=dtype)
988
989
990
991
992
993
994
995
996
997
            assert(isinstance(l.harmonic, bool))
            assert_equal(l.paradict['lmax'], lmax)
            if mmax is None or mmax > lmax:
                assert_equal(l.paradict['mmax'], lmax)
            else:
                assert_equal(l.paradict['mmax'], mmax)
            assert_equal(l.dtype, dtype)
            assert_equal(l.discrete, True)
            assert_equal(l.harmonic, True)
            assert_equal(l.distances, (np.float(1),))
Ultima's avatar
Ultima committed
998
        else:
csongor's avatar
csongor committed
999
            with assert_raises(NotImplementedError): lm_space(lmax, mmax=mmax, dtype=dtype)
1000

Ultima's avatar
Ultima committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

###############################################################################

    def test_para(self):
        lmax = 17
        mmax = 12
        l = lm_space(lmax, mmax=mmax)
        assert_equal(l.para, np.array([lmax, mmax]))

        new_para = np.array([9, 12])
        l.para = new_para
        assert_equal(l.para, np.array([9, 9]))

    def test_get_shape_dof_meta_volume(self):
        lmax = 17
        mmax = 12
        l = lm_space(lmax, mmax=mmax)

        assert_equal(l.get_shape(), (156,))
        assert_equal(l.get_dof(), 294)
        assert_equal(l.get_dof(split=True), (294,))
        assert_equal(l.get_meta_volume(), 294.)
        assert_equal(l.get_meta_volume(split=True),
                     l.cast(np.concatenate([np.ones(18), np.ones(138)*2])))

    def test_cast(self):
        lmax = 17
        mmax = 12
        l = lm_space(lmax, mmax=mmax)

        casted = l.cast(1+1j)
        real_part = casted[:18]
        assert(real_part,  l.unary_operation(real_part, 'real'))

###############################################################################

    @parameterized.expand(
        testcase_func_name=custom_name_func)
csongor's avatar
csongor committed
1039
    def test_enforce_power(self):
Ultima's avatar
Ultima committed
1040
1041
        lmax = 17
        mmax = 12
csongor's avatar
csongor committed
1042
        # TODO Look at this
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        if datamodel in ['not']:
            l = lm_space(lmax, mmax=mmax, datamodel=datamodel)

            assert_equal(l.enforce_power(2),
                         np.ones(18)*2)
            assert_almost_equal(
                l.enforce_power(lambda x: 42 / (1 + x)**5),
                np.array([  4.20000000e+01,   1.31250000e+00,   1.72839506e-01,
             4.10156250e-02,   1.34400000e-02,   5.40123457e-03,
             2.49895877e-03,   1.28173828e-03,   7.11273688e-04,
             4.20000000e-04,   2.60786956e-04,   1.68788580e-04,
             1.13118211e-04,   7.80924615e-05,   5.53086420e-05,
             4.00543213e-05,   2.95804437e-05,   2.22273027e-05]))
        else:
            with assert_raises(NotImplementedError): lm_space(lmax, mmax=mmax, datamodel=datamodel)
Ultima's avatar
Ultima committed
1058
1059
1060

##############################################################################

csongor's avatar
csongor committed
1061
1062
    @parameterized.expand(testcase_func_name=custom_name_func)
    def test_get_check_codomain(self):
Ultima's avatar
Ultima committed
1063
1064
        lmax = 23
        mmax = 23
csongor's avatar
csongor committed
1065
        # TODO Look at this
1066
        if datamodel in ['not']:
csongor's avatar
csongor committed
1067
            l = lm_space(lmax, mmax=mmax)
Ultima's avatar
Ultima committed
1068

1069
            y = l.get_codomain()
Ultima's avatar
Ultima committed
1070
1071
1072
            assert(l.check_codomain(y))
            assert(y.check_codomain(l))

1073
1074
1075
1076
1077
1078
1079
1080
1081
            if 'hp_space' in available:
                y = l.get_codomain('hp')
                assert(l.check_codomain(y))
                assert(y.check_codomain(l))
            if 'gl_space' in available:
                y = l.get_codomain('gl')
                assert(l.check_codomain(y))
                assert(y.check_codomain(l))
        else:
csongor's avatar
csongor committed
1082
            with assert_raises(NotImplementedError): lm_space(lmax, mmax=mmax)
1083

Ultima's avatar
Ultima committed
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

###############################################################################
#
#    @parameterized.expand(
#        itertools.product([True], #[True, False],
#                          ['pyfftw']),
#                          #DATAMODELS['rg_space']),
#        testcase_func_name=custom_name_func)
#    def test_get_random_values(self, harmonic, datamodel):
#        x = rg_space((4, 4), complexity=1, harmonic=harmonic,
#                     datamodel=datamodel)
#
#        # pm1
#        data = x.get_random_values(random='pm1')
#        flipped_data = flip(x, data)
#        assert(check_almost_equality(x, data, flipped_data))
#
#        # gau
#        data = x.get_random_values(random='gau', mean=4 + 3j, std=2)
#        flipped_data = flip(x, data)
#        assert(check_almost_equality(x, data, flipped_data))
#
#        # uni
#        data = x.get_random_values(random='uni', vmin=-2, vmax=4)
#        flipped_data = flip(x, data)
#        assert(check_almost_equality(x, data, flipped_data))
#
#        # syn
#        data = x.get_random_values(random='syn',
#                                   spec=lambda x: 42 / (1 + x)**3)
#        flipped_data = flip(x, data)
#        assert(check_almost_equality(x, data, flipped_data))
#
################################################################################
#
#    @parameterized.expand(
#        DATAMODELS['rg_space'],
#        testcase_func_name=custom_name_func)
#    def test_calc_dot(self, datamodel):
#        shape = (8, 8)
#        a = np.arange(np.prod(shape)).reshape(shape)
#        x = rg_space(shape)
#        assert_equal(x.calc_dot(a, a), 85344)
#        assert_equal(x.calc_dot(a, 1), 2016)
#        assert_equal(x.calc_dot(1, a), 2016)
#
################################################################################
#
#    @parameterized.expand(
#        itertools.product([0, 1],
#                          DATAMODELS['rg_space']),
#        testcase_func_name=custom_name_func)
#    def test_calc_transform_general(self, complexity, datamodel):
#        data = fft_test_data.copy()
#        shape = data.shape
#
#        x = rg_space(shape, complexity=complexity, datamodel=datamodel)
#        data = fft_test_data.copy()
#        data = x.cast(data)
#        check_equality(x, data, x.calc_transform(x.calc_transform(data)))
#
################################################################################
#
#    @parameterized.expand(
#        itertools.product(fft_modules,
#                          DATAMODELS['rg_space']),
#        testcase_func_name=custom_name_func)
#    def test_calc_transform_explicit(self, fft_module, datamodel):
#        data = fft_test_data.copy()
#        shape = data.shape
#
#        x = rg_space(shape, complexity=2, zerocenter=False,
#                     fft_module=fft_module, datamodel=datamodel)
#        casted_data = x.cast(data)
#        assert(check_almost_equality(x, x.calc_transform(casted_data),
#                                     np.array([[0.50541615 + 0.50558267j, -0.01458536 - 0.01646137j,
#                                                0.01649006 + 0.01990988j, 0.04668049 - 0.03351745j,
#                                                -0.04382765 - 0.06455639j, -0.05978564 + 0.01334044j],
#                                               [-0.05347464 + 0.04233343j, -0.05167177 + 0.00643947j,
#                                                -0.01995970 - 0.01168872j, 0.10653817 + 0.03885947j,
#                                                -0.03298075 - 0.00374715j, 0.00622585 - 0.01037453j],
#                                               [-0.01128964 - 0.02424692j, -0.03347793 - 0.0358814j,
#                                                -0.03924164 - 0.01978305j, 0.03821242 - 0.00435542j,
#                                                0.07533170 + 0.14590143j, -0.01493027 - 0.02664675j],
#                                               [0.02238926 + 0.06140625j, -0.06211313 + 0.03317753j,
#                                                0.01519073 + 0.02842563j, 0.00517758 + 0.08601604j,
#                                                -0.02246912 - 0.01942764j, -0.06627311 - 0.08763801j],
#                                               [-0.02492378 - 0.06097411j, 0.06365649 - 0.09346585j,
#                                                0.05031486 + 0.00858656j, -0.00881969 + 0.01842357j,
#                                                -0.01972641 - 0.00994365j, 0.05289453 - 0.06822038j],
#                                               [-0.01865586 - 0.08640926j, 0.03414096 - 0.02605602j,
#                                                -0.09492552 + 0.01306734j, 0.09355730 + 0.07553701j,
#                                                -0.02395259 - 0.02185743j, -0.03107832 - 0.04714527j]])))
#
#        x = rg_space(shape, complexity=2, zerocenter=True,
#                     fft_module=fft_module, datamodel=datamodel)
#        casted_data = x.cast(data)
#        assert(check_almost_equality(x, x.calc_transform(casted_data),
#                                     np.array([[0.00517758 + 0.08601604j, 0.02246912 + 0.01942764j,
#                                                -0.06627311 - 0.08763801j, -0.02238926 - 0.06140625j,
#                                                -0.06211313 + 0.03317753j, -0.01519073 - 0.02842563j],
#                                               [0.00881969 - 0.01842357j, -0.01972641 - 0.00994365j,
#                                                -0.05289453 + 0.06822038j, -0.02492378 - 0.06097411j,
#                                                -0.06365649 + 0.09346585j, 0.05031486 + 0.00858656j],
#                                               [0.09355730 + 0.07553701j, 0.02395259 + 0.02185743j,
#                                                -0.03107832 - 0.04714527j, 0.01865586 + 0.08640926j,
#                                                0.03414096 - 0.02605602j, 0.09492552 - 0.01306734j],
#                                               [-0.04668049 + 0.03351745j, -0.04382765 - 0.06455639j,
#                                                0.05978564 - 0.01334044j, 0.50541615 + 0.50558267j,
#                                                0.01458536 + 0.01646137j, 0.01649006 + 0.01990988j],
#                                               [0.10653817 + 0.03885947j, 0.03298075 + 0.00374715j,
#                                                0.00622585 - 0.01037453j, 0.05347464 - 0.04233343j,
#                                                -0.05167177 + 0.00643947j, 0.01995970 + 0.01168872j],
#                                               [-0.03821242 + 0.00435542j, 0.07533170 + 0.14590143j,
#                                                0.01493027 + 0.02664675j, -0.01128964 - 0.02424692j,
#                                                0.03347793 + 0.0358814j, -0.03924164 - 0.01978305j]])))
#
#        x = rg_space(shape, complexity=2, zerocenter=[True, False],
#                     fft_module=fft_module, datamodel=datamodel)
#        casted_data = x.cast(data)
#        assert(check_almost_equality(x, x.calc_transform(casted_data),
#                                     np.array([[-0.02238926 - 0.06140625j, 0.06211313 - 0.03317753j,
#                                                -0.01519073 - 0.02842563j, -0.00517758 - 0.08601604j,
#                                                0.02246912 + 0.01942764j, 0.06627311 + 0.08763801j],
#                                               [-0.02492378 - 0.06097411j, 0.06365649 - 0.09346585j,
#                                                0.05031486 + 0.00858656j, -0.00881969 + 0.01842357j,
#                                                -0.01972641 - 0.00994365j, 0.05289453 - 0.06822038j],
#                                               [0.01865586 + 0.08640926j, -0.03414096 + 0.02605602j,
#                                                0.09492552 - 0.01306734j, -0.09355730 - 0.07553701j,
#                                                0.02395259 + 0.02185743j, 0.03107832 + 0.04714527j],
#                                               [0.50541615 + 0.50558267j, -0.01458536 - 0.01646137j,
#                                                0.01649006 + 0.01990988j, 0.04668049 - 0.03351745j,
#                                                -0.04382765 - 0.06455639j, -0.05978564 + 0.01334044j],
#                                               [0.05347464 - 0.04233343j, 0.05167177 - 0.00643947j,
#                                                0.01995970 + 0.01168872j, -0.10653817 - 0.03885947j,
#                                                0.03298075 + 0.00374715j, -0.00622585 + 0.01037453j],
#                                               [-0.01128964 - 0.02424692j, -0.03347793 - 0.0358814j,
#                                                -0.03924164 - 0.01978305j, 0.03821242 - 0.00435542j,
#                                                0.07533170 + 0.14590143j, -0.01493027 - 0.02664675j]])))
#
#        x = rg_space(shape, complexity=2, zerocenter=[True, False],
#                     fft_module=fft_module, datamodel=datamodel)
#        y = rg_space(shape, complexity=2, zerocenter=[False, True],
#                     distances=[1, 1], harmonic=True,
#                     fft_module=fft_module, datamodel=datamodel)
#        casted_data = x.cast(data)
#        assert(check_almost_equality(x, x.calc_transform(casted_data,
#                                                         codomain=y),
#                                     np.array([[0.04668049 - 0.03351745j, -0.04382765 - 0.06455639j,
#                                                -0.05978564 + 0.01334044j, 0.50541615 + 0.50558267j,
#                                                -0.01458536 - 0.01646137j, 0.01649006 + 0.01990988j],
#                                               [-0.10653817 - 0.03885947j, 0.03298075 + 0.00374715j,
#                                                -0.00622585 + 0.01037453j, 0.05347464 - 0.04233343j,
#                                                0.05167177 - 0.00643947j, 0.01995970 + 0.01168872j],
#                                               [0.03821242 - 0.00435542j, 0.07533170 + 0.14590143j,
#                                                -0.01493027 - 0.02664675j, -0.01128964 - 0.02424692j,
#                                                -0.03347793 - 0.0358814j, -0.03924164 - 0.01978305j],
#                                               [-0.00517758 - 0.08601604j, 0.02246912 + 0.01942764j,
#                                                0.06627311 + 0.08763801j, -0.02238926 - 0.06140625j,
#                                                0.06211313 - 0.03317753j, -0.01519073 - 0.02842563j],
#                                               [-0.00881969 + 0.01842357j, -0.01972641 - 0.00994365j,
#                                                0.05289453 - 0.06822038j, -0.02492378 - 0.06097411j,
#                                                0.06365649 - 0.09346585j, 0.05031486 + 0.00858656j],
#                                               [-0.09355730 - 0.07553701j, 0.02395259 + 0.02185743j,
#                                                0.03107832 + 0.04714527j, 0.01865586 + 0.08640926j,
#                                                -0.03414096 + 0.02605602j, 0.09492552 - 0.01306734j]])))
#
################################################################################
#
#    @parameterized.expand(DATAMODELS['rg_space'],
#                          testcase_func_name=custom_name_func)
#    def test_calc_smooth(self, datamodel):
#        sigma = 0.01
#        shape = (8, 8)
#        a = np.arange(np.prod(shape)).reshape(shape)
#        x = rg_space(shape)
#        casted_a = x.cast(a)
#        assert(check_almost_equality(x, x.calc_smooth(casted_a, sigma=sigma),
#                                     np.array([[0.3869063,   1.33370382,   2.34906384,   3.3400879,
#                                                4.34774552,   5.33876958,   6.3541296,   7.30092712],
#                                               [7.96128648,   8.90808401,   9.92344403,  10.91446809,
#                                                11.9221257,  12.91314976,  13.92850978,  14.87530731],
#                                               [16.08416664,  17.03096417,  18.04632419,  19.03734824,
#                                                20.04500586,  21.03602992,  22.05138994,  22.99818747],
#                                               [24.01235911,  24.95915664,  25.97451666,  26.96554072,
#                                                27.97319833,  28.96422239,  29.97958241,  30.92637994],
#                                               [32.07362006,  33.02041759,  34.03577761,  35.02680167,
#                                                36.03445928,  37.02548334,  38.04084336,  38.98764089],
#                                               [40.00181253,  40.94861006,  41.96397008,  42.95499414,
#                                                43.96265176,  44.95367581,  45.96903583,  46.91583336],
#                                               [48.12469269,  49.07149022,  50.08685024,  51.0778743,
#                                                52.08553191,  53.07655597,  54.09191599,  55.03871352],
#                                               [55.69907288,  56.6458704,  57.66123042,  58.65225448,
#                                                59.6599121,  60.65093616,  61.66629618,  62.6130937]])))
#
################################################################################
#
#    @parameterized.expand(DATAMODELS['rg_space'],
#                          testcase_func_name=custom_name_func)
#    def test_calc_power(self, datamodel):
#        shape = (8, 8)
#        a = np.arange(np.prod(shape)).reshape(shape)
#        x = rg_space(shape)
#        assert_almost_equal(x.calc_power(a),
#                            np.array([992.25, 55.48097039, 0., 16.25,
#                                      0., 0., 9.51902961, 0.,
#                                      0., 8.125, 0., 0.,
#                                      0., 0., 0.]))
#


print all_spaces
1296
1297
1298
1299
print generate_space('rg_space')

class Test_axis(unittest.TestCase):
    @parameterized.expand(
csongor's avatar
csongor committed
1300
        itertools.product(point_like_spaces, [4],
1301
                          ['sum', 'prod', 'mean', 'var', 'std', 'median', 'all',
1302
1303
                           'any', 'amin', 'nanmin', 'argmin', 'amax', 'nanmax',
                           'argmax']