nifty_lm.py 81 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
#
# Copyright (C) 2015 Max-Planck-Society
#
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  lm
    ..                               /______/

    NIFTY submodule for grids on the two-sphere.

"""
from __future__ import division
35

Marco Selig's avatar
Marco Selig committed
36
37
38
39
40
import os
import numpy as np
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
41

42
43
from d2o import STRATEGIES as DISTRIBUTION_STRATEGIES

44
45
46
from nifty.nifty_core import space,\
                             point_space,\
                             field
47
48
49
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
Ultimanet's avatar
Ultimanet committed
50
from nifty.nifty_paradict import lm_space_paradict,\
51
52
53
                                 gl_space_paradict,\
                                 hp_space_paradict
from nifty.nifty_power_indices import lm_power_indices
Ultimanet's avatar
Ultimanet committed
54
from nifty.nifty_random import random
55

Ultima's avatar
Ultima committed
56
57
gl = gdi.get('libsharp_wrapper_gl')
hp = gdi.get('healpy')
58

59
60
61
LM_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
GL_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
HP_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Marco Selig's avatar
Marco Selig committed
62
63


64
class lm_space(point_space):
Marco Selig's avatar
Marco Selig committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.
        mmax : int, *optional*
            Maximum :math:`m`-value up to which the spherical harmonics
            coefficients are to be used (default: `lmax`).
84
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
            Data type of the field values (default: numpy.complex128).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        Notes
        -----
        Hermitian symmetry, i.e. :math:`a_{\ell -m} = \overline{a}_{\ell m}` is
        always assumed for the spherical harmonics components, i.e. only fields
        on the two-sphere with real-valued representations in position space
        can be handled.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `lmax` and
            `mmax`.
114
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
115
116
117
118
119
120
121
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that an :py:class:`lm_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`lm_space`, which is always 1.
    """
122
123

    def __init__(self, lmax, mmax=None, dtype=np.dtype('complex128'),
csongor's avatar
csongor committed
124
                 comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
125
126
127
128
129
130
131
132
133
134
135
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.
            mmax : int, *optional*
                Maximum :math:`m`-value up to which the spherical harmonics
                coefficients are to be used (default: `lmax`).
136
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
                Data type of the field values (default: numpy.complex128).

            Returns
            -------
            None.

            Raises
            ------
            ImportError
                If neither the libsharp_wrapper_gl nor the healpy module are
                available.
            ValueError
                If input `nside` is invaild.

        """
152

153
        # check imports
Ultima's avatar
Ultima committed
154
        if not gc['use_libsharp'] and not gc['use_healpy']:
155
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
156
                "ERROR: neither libsharp_wrapper_gl nor healpy activated."))
157

Ultima's avatar
Ultima committed
158
159
        self._cache_dict = {'check_codomain': {}}

160
        self.paradict = lm_space_paradict(lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
161

162
163
164
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('complex64'), np.dtype('complex128')]:
theos's avatar
theos committed
165
            about.warnings.cprint("WARNING: data type set to complex128.")
166
167
            dtype = np.dtype('complex128')
        self.dtype = dtype
168

Marco Selig's avatar
Marco Selig committed
169
        self.discrete = True
170
        self.harmonic = True
171
        self.distances = (np.float(1),)
172
        self.comm = self._parse_comm(comm)
173
174
175
176
177
178

        self.power_indices = lm_power_indices(
                    lmax=self.paradict['lmax'],
                    dim=self.get_dim(),
                    comm=self.comm,
                    allowed_distribution_strategies=LM_DISTRIBUTION_STRATEGIES)
Marco Selig's avatar
Marco Selig committed
179

180
181
    @property
    def para(self):
182
        temp = np.array([self.paradict['lmax'],
183
184
                         self.paradict['mmax']], dtype=int)
        return temp
185

186
187
188
189
190
    @para.setter
    def para(self, x):
        self.paradict['lmax'] = x[0]
        self.paradict['mmax'] = x[1]

Ultima's avatar
Ultima committed
191
192
193
    def __hash__(self):
        result_hash = 0
        for (key, item) in vars(self).items():
Ultima's avatar
Ultima committed
194
            if key in ['_cache_dict', 'power_indices']:
Ultima's avatar
Ultima committed
195
196
197
198
                continue
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

Ultima's avatar
Ultima committed
199
200
201
202
203
204
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
Ultima's avatar
Ultima committed
205
                if ii[0] not in ['_cache_dict', 'power_indices', 'comm']]
Ultima's avatar
Ultima committed
206
207
208
209
        temp.append(('comm', self.comm.__hash__()))
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

210
    def copy(self):
211
212
213
214
        return lm_space(lmax=self.paradict['lmax'],
                        mmax=self.paradict['mmax'],
                        dtype=self.dtype)

215
    def get_shape(self):
Ultima's avatar
Ultima committed
216
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
217
218
        mmax = self.paradict['mmax']
        return (np.int((mmax + 1) * (lmax + 1) - ((mmax + 1) * mmax) // 2),)
219
220

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        """
            Computes the number of degrees of freedom of the space, taking into
            account symmetry constraints and complex-valuedness.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            The number of degrees of freedom is reduced due to the hermitian
            symmetry, which is assumed for the spherical harmonics components.
        """
235
236
        # dof = 2*dim-(lmax+1) = (lmax+1)*(2*mmax+1)*(mmax+1)*mmax
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
237
        mmax = self.paradict['mmax']
238
239
240
241
242
        dof = np.int((lmax + 1) * (2 * mmax + 1) - (mmax + 1) * mmax)
        if split:
            return (dof, )
        else:
            return dof
Marco Selig's avatar
Marco Selig committed
243

244
    def get_meta_volume(self, split=False):
Marco Selig's avatar
Marco Selig committed
245
        """
246
            Calculates the meta volumes.
Marco Selig's avatar
Marco Selig committed
247

248
249
250
251
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.
Marco Selig's avatar
Marco Selig committed
252
253
254

            Parameters
            ----------
255
256
257
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).
Marco Selig's avatar
Marco Selig committed
258
259
260

            Returns
            -------
261
262
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.
Marco Selig's avatar
Marco Selig committed
263

264
265
266
267
268
            Notes
            -----
            The spherical harmonics components with :math:`m=0` have meta
            volume 1, the ones with :math:`m>0` have meta volume 2, sinnce they
            each determine another component with negative :math:`m`.
Marco Selig's avatar
Marco Selig committed
269
        """
270
271
272
273
274
275
        if not split:
            return np.float(self.get_dof())
        else:
            mol = self.cast(1, dtype=np.float)
            mol[self.paradict['lmax'] + 1:] = 2  # redundant: (l,m) and (l,-m)
            return mol
Marco Selig's avatar
Marco Selig committed
276

theos's avatar
theos committed
277
278
279
280
    def _cast_to_d2o(self, x, dtype=None, **kwargs):
        casted_x = super(lm_space, self)._cast_to_d2o(x=x,
                                                      dtype=dtype,
                                                      **kwargs)
281
282
        lmax = self.paradict['lmax']
        complexity_mask = casted_x[:lmax+1].iscomplex()
theos's avatar
theos committed
283
        if complexity_mask.any():
Ultima's avatar
Ultima committed
284
            about.warnings.cprint("WARNING: Taking the absolute values for " +
285
                                  "all complex entries where lmax==0")
286
            casted_x[:lmax+1] = abs(casted_x[:lmax+1])
287
288
        return casted_x

289
    # TODO: Extend to binning/log
290
291
292
293
294
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['lmax'] + 1
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
295
296
297
298
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)

Ultima's avatar
Ultima committed
299
    def _check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        """
            Checks whether a given codomain is compatible to the
            :py:class:`lm_space` or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`lm_space`,
            :py:class:`gl_space`, and :py:class:`hp_space`.
        """
319
320
        if codomain is None:
            return False
321

322
323
324
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty lm_space."))
Marco Selig's avatar
Marco Selig committed
325

326
327
328
        if self.comm is not codomain.comm:
            return False

329
330
331
        elif isinstance(codomain, gl_space):
            # lmax==mmax
            # nlat==lmax+1
332
            # nlon==2*lmax+1
333
334
335
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (codomain.paradict['nlat'] == self.paradict['lmax']+1) and
                    (codomain.paradict['nlon'] == 2*self.paradict['lmax']+1)):
Marco Selig's avatar
Marco Selig committed
336
337
                return True

338
339
340
341
342
        elif isinstance(codomain, hp_space):
            # lmax==mmax
            # 3*nside-1==lmax
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (3*codomain.paradict['nside']-1 == self.paradict['lmax'])):
Marco Selig's avatar
Marco Selig committed
343
344
345
346
                return True

        return False

347
    def get_codomain(self, coname=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  a pixelization of the two-sphere.

            Parameters
            ----------
            coname : string, *optional*
                String specifying a desired codomain (default: None).

            Returns
            -------
            codomain : nifty.space
                A compatible codomain.

            Notes
            -----
            Possible arguments for `coname` are ``'gl'`` in which case a Gauss-
            Legendre pixelization [#]_ of the sphere is generated, and ``'hp'``
            in which case a HEALPix pixelization [#]_ is generated.

            References
            ----------
            .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
                   High-Resolution Discretization and Fast Analysis of Data
                   Distributed on the Sphere", *ApJ* 622..759G.
373
374
            .. [#] M. Reinecke and D. Sverre Seljebotn, 2013,
                   "Libsharp - spherical
Marco Selig's avatar
Marco Selig committed
375
376
377
378
                   harmonic transforms revisited";
                   `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        """
379
380
381
382
383
        if coname == 'gl' or (coname is None and gc['lm2gl']):
            if self.dtype == np.dtype('complex64'):
                new_dtype = np.float32
            elif self.dtype == np.dtype('complex128'):
                new_dtype = np.float64
Marco Selig's avatar
Marco Selig committed
384
            else:
385
386
387
                raise NotImplementedError
            nlat = self.paradict['lmax'] + 1
            nlon = self.paradict['lmax'] * 2 + 1
388
389
390
            return gl_space(nlat=nlat, nlon=nlon, dtype=new_dtype,
                            comm=self.comm)

391
392
        elif coname == 'hp' or (coname is None and not gc['lm2gl']):
            nside = (self.paradict['lmax']+1) // 3
393
394
395
            return hp_space(nside=nside,
                            comm=self.comm)

Marco Selig's avatar
Marco Selig committed
396
        else:
397
            raise ValueError(about._errors.cstring(
398
399
400
401
402
403
404
405
406
407
408
409
                "ERROR: unsupported or incompatible codomain '"+coname+"'."))

    def get_random_values(self, **kwargs):
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account complex-valuedness and
            hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.
Marco Selig's avatar
Marco Selig committed
410

411
412
413
414
415
416
            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
417

418
419
420
421
422
423
                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given
                    standard
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)
Marco Selig's avatar
Marco Selig committed
424

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
            spec : {scalar, list, numpy.array, nifty.field, function},
                *optional*
                Power spectrum (default: 1).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
        arg = random.parse_arguments(self, **kwargs)

441
442
443
444
445
446
447
448
449
450
451
#        if arg is None:
#            x = 0
#
#        elif arg['random'] == "pm1":
#            x = random.pm1(dtype=self.dtype, shape=self.get_shape())
#
#        elif arg['random'] == "gau":
#            x = random.gau(dtype=self.dtype,
#                           shape=self.get_shape(),
#                           mean=arg['mean'],
#                           std=arg['std'])
452

453
        if arg['random'] == "syn":
454
455
456
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
457
                if gc['use_libsharp']:
458
                    sample = gl.synalm_f(arg['spec'], lmax=lmax, mmax=mmax)
459
                else:
460
461
462
463
                    sample = hp.synalm(
                                arg['spec'].astype(np.complex128),
                                lmax=lmax, mmax=mmax).astype(np.complex64,
                                                             copy=False)
464
            else:
Ultima's avatar
Ultima committed
465
                if gc['use_healpy']:
466
                    sample = hp.synalm(arg['spec'], lmax=lmax, mmax=mmax)
467
                else:
468
                    sample = gl.synalm(arg['spec'], lmax=lmax, mmax=mmax)
469
470

        else:
471
            sample = super(lm_space, self).get_random_values(**arg)
Marco Selig's avatar
Marco Selig committed
472

473
474
475
476
477
478
479
480
481
482
483
#        elif arg['random'] == "uni":
#            x = random.uni(dtype=self.dtype,
#                           shape=self.get_shape(),
#                           vmin=arg['vmin'],
#                           vmax=arg['vmax'])
#
#        else:
#            raise KeyError(about._errors.cstring(
#                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
        sample = self.cast(sample)
        return sample
484

485
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
        """
            Computes the discrete inner product of two given arrays of field
            values.

            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array

            Returns
            -------
            dot : scalar
                Inner product of the two arrays.
        """
502
503
504
505
        x = self.cast(x)
        y = self.cast(y)

        lmax = self.paradict['lmax']
506
507
508
509
510
511
512
513
514

        x_low = x[:lmax + 1]
        x_high = x[lmax + 1:]
        y_low = y[:lmax + 1]
        y_high = y[lmax + 1:]

        dot = (x_low.real * y_low.real).sum()
        dot += 2 * (x_high.real * y_high.real).sum()
        dot += 2 * (x_high.imag * y_high.imag).sum()
515
516
        return dot

517
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
518
519
520
521
522
523
524
525
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
526
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
527
528
529
530
531
532
533
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
534
        x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
535

536
537
        if codomain is None:
            codomain = self.get_codomain()
Marco Selig's avatar
Marco Selig committed
538

539
540
541
542
        # Check if the given codomain is suitable for the transformation
        if not self.check_codomain(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported codomain."))
Marco Selig's avatar
Marco Selig committed
543

csongor's avatar
csongor committed
544
545
546
547
        # if self.datamodel != 'not':
        #     about.warnings.cprint(
        #         "WARNING: Field data is consolidated to all nodes for "
        #         "external alm2map method!")
548
549
550

        np_x = x.get_full_data()

551
552
553
554
555
        if isinstance(codomain, gl_space):
            nlat = codomain.paradict['nlat']
            nlon = codomain.paradict['nlon']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
Marco Selig's avatar
Marco Selig committed
556

557
            # transform
558
            if self.dtype == np.dtype('complex64'):
559
560
                np_Tx = gl.alm2map_f(np_x, nlat=nlat, nlon=nlon,
                                     lmax=lmax, mmax=mmax, cl=False)
Marco Selig's avatar
Marco Selig committed
561
            else:
562
563
564
                np_Tx = gl.alm2map(np_x, nlat=nlat, nlon=nlon,
                                   lmax=lmax, mmax=mmax, cl=False)
            Tx = codomain.cast(np_Tx)
Marco Selig's avatar
Marco Selig committed
565

566
567
568
569
570
        elif isinstance(codomain, hp_space):
            nside = codomain.paradict['nside']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']

571
            # transform
572
573
574
575
576
            np_x = np_x.astype(np.complex128, copy=False)
            np_Tx = hp.alm2map(np_x, nside, lmax=lmax,
                               mmax=mmax, pixwin=False, fwhm=0.0, sigma=None,
                               pol=True, inplace=False)
            Tx = codomain.cast(np_Tx)
Marco Selig's avatar
Marco Selig committed
577
578

        else:
579
580
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported transformation."))
Marco Selig's avatar
Marco Selig committed
581

582
583
584
585
586
        # re-weight if discrete
        if codomain.discrete:
            Tx = codomain.calc_weight(Tx, power=0.5)

        return codomain.cast(Tx)
Marco Selig's avatar
Marco Selig committed
587

588
    def calc_smooth(self, x, sigma=0, **kwargs):
Marco Selig's avatar
Marco Selig committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel in position space.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """
607
        x = self.cast(x)
608
        # check sigma
609
        if sigma == 0:
Ultima's avatar
Ultima committed
610
            return self.unary_operation(x, op='copy')
611
        elif sigma == -1:
Marco Selig's avatar
Marco Selig committed
612
            about.infos.cprint("INFO: invalid sigma reset.")
613
614
            sigma = np.sqrt(2) * np.pi / (self.paradict['lmax'] + 1)
        elif sigma < 0:
Marco Selig's avatar
Marco Selig committed
615
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))
616

csongor's avatar
csongor committed
617
618
619
620
        # if self.datamodel != 'not':
        #     about.warnings.cprint(
        #         "WARNING: Field data is consolidated to all nodes for "
        #         "external smoothalm method!")
theos's avatar
theos committed
621
622
623

        np_x = x.get_full_data()

Ultima's avatar
Ultima committed
624
        if gc['use_healpy']:
theos's avatar
theos committed
625
626
627
628
629
630
631
            np_smoothed_x = hp.smoothalm(np_x,
                                         fwhm=0.0,
                                         sigma=sigma,
                                         pol=True,
                                         mmax=self.paradict['mmax'],
                                         verbose=False,
                                         inplace=False)
Marco Selig's avatar
Marco Selig committed
632
        else:
theos's avatar
theos committed
633
634
635
636
637
638
639
            np_smoothed_x = gl.smoothalm(np_x,
                                         lmax=self.paradict['lmax'],
                                         mmax=self.paradict['mmax'],
                                         fwhm=0.0,
                                         sigma=sigma,
                                         overwrite=False)
        return self.cast(np_smoothed_x)
Marco Selig's avatar
Marco Selig committed
640

641
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.
        """
656
657
658
659
        x = self.cast(x)
        lmax = self.paradict['lmax']
        mmax = self.paradict['mmax']

csongor's avatar
csongor committed
660
661
662
663
        # if self.datamodel != 'not':
        #     about.warnings.cprint(
        #         "WARNING: Field data is consolidated to all nodes for "
        #         "external anaalm/alm2cl method!")
theos's avatar
theos committed
664
665
666

        np_x = x.get_full_data()

667
        # power spectrum
668
        if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
669
            if gc['use_libsharp']:
theos's avatar
theos committed
670
                result = gl.anaalm_f(np_x, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
671
            else:
theos's avatar
theos committed
672
673
674
675
676
677
678
                np_x = np_x.astype(np.complex128, copy=False)
                result = hp.alm2cl(np_x,
                                   alms2=None,
                                   lmax=lmax,
                                   mmax=mmax,
                                   lmax_out=lmax,
                                   nspec=None)
Marco Selig's avatar
Marco Selig committed
679
        else:
Ultima's avatar
Ultima committed
680
            if gc['use_healpy']:
theos's avatar
theos committed
681
682
683
684
685
686
                result = hp.alm2cl(np_x,
                                   alms2=None,
                                   lmax=lmax,
                                   mmax=mmax,
                                   lmax_out=lmax,
                                   nspec=None)
Marco Selig's avatar
Marco Selig committed
687
            else:
theos's avatar
theos committed
688
689
690
                result = gl.anaalm(np_x,
                                   lmax=lmax,
                                   mmax=mmax)
theos's avatar
theos committed
691
692
693
694
695
696
697
698
699

        if self.dtype == np.dtype('complex64'):
            result = result.astype(np.float32, copy=False)
        elif self.dtype == np.dtype('complex128'):
            result = result.astype(np.float64, copy=False)
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: dtype %s not known to calc_power method." %
                str(self.dtype)))
Marco Selig's avatar
Marco Selig committed
700

701
702
703
    def get_plot(self, x, title="", vmin=None, vmax=None, power=True,
                 norm=None, cmap=None, cbar=True, other=None, legend=False,
                 mono=True, **kwargs):
Marco Selig's avatar
Marco Selig committed
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: True).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).

        """
theos's avatar
theos committed
748
749
750
751
752
        try:
            x = x.get_full_data()
        except AttributeError:
            pass

753
        if(not pl.isinteractive())and(not bool(kwargs.get("save", False))):
Marco Selig's avatar
Marco Selig committed
754
755
756
757
758
            about.warnings.cprint("WARNING: interactive mode off.")

        if(power):
            x = self.calc_power(x)

759
760
761
            fig = pl.figure(num=None, figsize=(6.4, 4.8), dpi=None, facecolor="none",
                            edgecolor="none", frameon=False, FigureClass=pl.Figure)
            ax0 = fig.add_axes([0.12, 0.12, 0.82, 0.76])
Marco Selig's avatar
Marco Selig committed
762

763
            xaxes = np.arange(self.para[0] + 1, dtype=np.int)
Marco Selig's avatar
Marco Selig committed
764
            if(vmin is None):
765
766
                vmin = np.min(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
767
            if(vmax is None):
768
769
770
771
                vmax = np.max(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
            ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * x)[1:], color=[0.0,
                                                                            0.5, 0.0], label="graph 0", linestyle='-', linewidth=2.0, zorder=1)
Marco Selig's avatar
Marco Selig committed
772
            if(mono):
773
774
                ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), x[0], s=20, color=[0.0, 0.5, 0.0], marker='o',
                            cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=1)
Marco Selig's avatar
Marco Selig committed
775
776

            if(other is not None):
777
                if(isinstance(other, tuple)):
Marco Selig's avatar
Marco Selig committed
778
779
                    other = list(other)
                    for ii in xrange(len(other)):
780
                        if(isinstance(other[ii], field)):
Marco Selig's avatar
Marco Selig committed
781
782
783
                            other[ii] = other[ii].power(**kwargs)
                        else:
                            other[ii] = self.enforce_power(other[ii])
784
                elif(isinstance(other, field)):
Marco Selig's avatar
Marco Selig committed
785
786
787
                    other = [other.power(**kwargs)]
                else:
                    other = [self.enforce_power(other)]
788
                imax = max(1, len(other) - 1)
Marco Selig's avatar
Marco Selig committed
789
                for ii in xrange(len(other)):
790
791
                    ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * other[ii])[1:], color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)
                                                                                            ** 2, max(0.0, 1.0 - (2 * (ii - imax) / imax)**2)], label="graph " + str(ii + 1), linestyle='-', linewidth=1.0, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
792
                    if(mono):
793
794
                        ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), other[ii][0], s=20, color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)**2, max(
                            0.0, 1.0 - (2 * (ii - imax) / imax)**2)], marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
795
796
797
                if(legend):
                    ax0.legend()

798
            ax0.set_xlim(xaxes[1], xaxes[-1])
Marco Selig's avatar
Marco Selig committed
799
            ax0.set_xlabel(r"$\ell$")
800
            ax0.set_ylim(vmin, vmax)
Marco Selig's avatar
Marco Selig committed
801
802
803
804
805
806
807
            ax0.set_ylabel(r"$\ell(2\ell+1) C_\ell$")
            ax0.set_title(title)

        else:
            if(np.iscomplexobj(x)):
                if(title):
                    title += " "
808
809
810
811
812
813
                if(bool(kwargs.get("save", False))):
                    save_ = os.path.splitext(
                        os.path.basename(str(kwargs.get("save"))))
                    kwargs.update(save=save_[0] + "_absolute" + save_[1])
                self.get_plot(np.absolute(x), title=title + "(absolute)", vmin=vmin, vmax=vmax,
                              power=False, norm=norm, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)
Marco Selig's avatar
Marco Selig committed
814
815
816
817
#                self.get_plot(np.real(x),title=title+"(real part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
#                self.get_plot(np.imag(x),title=title+"(imaginary part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
                if(cmap is None):
                    cmap = pl.cm.hsv_r
818
819
820
821
822
                if(bool(kwargs.get("save", False))):
                    kwargs.update(save=save_[0] + "_phase" + save_[1])
                self.get_plot(np.angle(x, deg=False), title=title + "(phase)", vmin=-3.1416, vmax=3.1416, power=False,
                              norm=None, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)  # values in [-pi,pi]
                return None  # leave method
Marco Selig's avatar
Marco Selig committed
823
824
            else:
                if(vmin is None):
825
                    vmin = np.min(x, axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
826
                if(vmax is None):
827
828
829
830
831
832
833
834
835
836
                    vmax = np.max(x, axis=None, out=None)
                if(norm == "log")and(vmin <= 0):
                    raise ValueError(about._errors.cstring(
                        "ERROR: nonpositive value(s)."))

                # not a number
                xmesh = np.nan * \
                    np.empty(self.para[::-1] + 1, dtype=np.float16, order='C')
                xmesh[4, 1] = None
                xmesh[1, 4] = None
Marco Selig's avatar
Marco Selig committed
837
                lm = 0
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
                for mm in xrange(self.para[1] + 1):
                    xmesh[mm][mm:] = x[lm:lm + self.para[0] + 1 - mm]
                    lm += self.para[0] + 1 - mm

                s_ = np.array([1, self.para[1] / self.para[0]
                               * (1.0 + 0.159 * bool(cbar))])
                fig = pl.figure(num=None, figsize=(
                    6.4 * s_[0], 6.4 * s_[1]), dpi=None, facecolor="none", edgecolor="none", frameon=False, FigureClass=pl.Figure)
                ax0 = fig.add_axes(
                    [0.06 / s_[0], 0.06 / s_[1], 1.0 - 0.12 / s_[0], 1.0 - 0.12 / s_[1]])
                ax0.set_axis_bgcolor([0.0, 0.0, 0.0, 0.0])

                xaxes = np.arange(self.para[0] + 2, dtype=np.int) - 0.5
                yaxes = np.arange(self.para[1] + 2, dtype=np.int) - 0.5
                if(norm == "log"):
                    n_ = ln(vmin=vmin, vmax=vmax)
Marco Selig's avatar
Marco Selig committed
854
855
                else:
                    n_ = None
856
857
858
859
                sub = ax0.pcolormesh(xaxes, yaxes, np.ma.masked_where(np.isnan(
                    xmesh), xmesh), cmap=cmap, norm=n_, vmin=vmin, vmax=vmax, clim=(vmin, vmax))
                ax0.set_xlim(xaxes[0], xaxes[-1])
                ax0.set_xticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
860
                ax0.set_xlabel(r"$\ell$")
861
862
                ax0.set_ylim(yaxes[0], yaxes[-1])
                ax0.set_yticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
863
864
865
                ax0.set_ylabel(r"$m$")
                ax0.set_aspect("equal")
                if(cbar):
866
867
868
869
870
871
                    if(norm == "log"):
                        f_ = lf(10, labelOnlyBase=False)
                        b_ = sub.norm.inverse(
                            np.linspace(0, 1, sub.cmap.N + 1))
                        v_ = np.linspace(
                            sub.norm.vmin, sub.norm.vmax, sub.cmap.N)
Marco Selig's avatar
Marco Selig committed
872
873
874
875
                    else:
                        f_ = None
                        b_ = None
                        v_ = None
876
877
                    fig.colorbar(sub, ax=ax0, orientation="horizontal", fraction=0.1, pad=0.05, shrink=0.75, aspect=20, ticks=[
                                 vmin, vmax], format=f_, drawedges=False, boundaries=b_, values=v_)
Marco Selig's avatar
Marco Selig committed
878
879
                ax0.set_title(title)

880
881
882
        if(bool(kwargs.get("save", False))):
            fig.savefig(str(kwargs.get("save")), dpi=None, facecolor="none", edgecolor="none", orientation="portrait",
                        papertype=None, format=None, transparent=False, bbox_inches=None, pad_inches=0.1)
Marco Selig's avatar
Marco Selig committed
883
884
885
886
            pl.close(fig)
        else:
            fig.canvas.draw()

887
888
889
890
891
892
893
894
    def getlm(self):  # > compute all (l,m)
        index = np.arange(self.get_dim())
        n = 2 * self.paradict['lmax'] + 1
        m = np.ceil(
            (n - np.sqrt(n**2 - 8 * (index - self.paradict['lmax']))) / 2
                    ).astype(np.int)
        l = index - self.paradict['lmax'] * m + m * (m - 1) // 2
        return l, m
Marco Selig's avatar
Marco Selig committed
895
896


897
class gl_space(point_space):
Marco Selig's avatar
Marco Selig committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
    """
        ..                 __
        ..               /  /
        ..     ____ __  /  /
        ..   /   _   / /  /
        ..  /  /_/  / /  /_
        ..  \___   /  \___/  space class
        .. /______/

        NIFTY subclass for Gauss-Legendre pixelizations [#]_ of the two-sphere.

        Parameters
        ----------
        nlat : int
            Number of latitudinal bins, or rings.
        nlon : int, *optional*
            Number of longitudinal bins (default: ``2*nlat - 1``).
915
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
916
917
918
919
920
921
922
923
924
925
            Data type of the field values (default: numpy.float64).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only real-valued fields on the two-sphere are supported, i.e.
926
        `dtype` has to be either numpy.float64 or numpy.float32.
Marco Selig's avatar
Marco Selig committed
927
928
929
930
931
932
933
934
935
936
937
938
939
940

        References
        ----------
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `nlat` and `nlon`.
941
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
942
943
944
945
946
947
948
            Data type of the field values.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array containing the pixel sizes.
    """
949

Ultima's avatar
Ultima committed
950
    def __init__(self, nlat, nlon=None, dtype=np.dtype('float64'),
csongor's avatar
csongor committed
951
                 comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
952
953
954
955
956
957
958
959
960
        """
            Sets the attributes for a gl_space class instance.

            Parameters
            ----------
            nlat : int
                Number of latitudinal bins, or rings.
            nlon : int, *optional*
                Number of longitudinal bins (default: ``2*nlat - 1``).
961
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
962
963
964
965
966
967
968
969
970
971
972
973
974
975
                Data type of the field values (default: numpy.float64).

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the libsharp_wrapper_gl module is not available.
            ValueError
                If input `nlat` is invaild.

        """
976
        # check imports
Ultima's avatar
Ultima committed
977
        if not gc['use_libsharp']:
978
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
979
                "ERROR: libsharp_wrapper_gl not loaded."))
980

Ultima's avatar
Ultima committed
981
        self._cache_dict = {'check_codomain': {}}
982
        self.paradict = gl_space_paradict(nlat=nlat, nlon=nlon)
Marco Selig's avatar
Marco Selig committed
983

984
985
986
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('float32'), np.dtype('float64')]:
Marco Selig's avatar
Marco Selig committed
987
            about.warnings.cprint("WARNING: data type set to default.")
988
989
            dtype = np.dtype('float')
        self.dtype = dtype
990

Marco Selig's avatar
Marco Selig committed
991
        self.discrete = False
992
        self.harmonic = False
csongor's avatar
csongor committed
993
        self.distances = tuple(gl.vol(self.paradict['nlat'],
994
                                      nlon=self.paradict['nlon']
csongor's avatar
csongor committed
995
                                      ).astype(np.float))
996
        self.comm = self._parse_comm(comm)
997
998
999

    @property
    def para(self):
1000
        temp = np.array([self.paradict['nlat'],
1001
1002
                         self.paradict['nlon']], dtype=int)
        return temp
1003

1004
1005
1006
1007
    @para.setter
    def para(self, x):
        self.paradict['nlat'] = x[0]
        self.paradict['nlon'] = x[1]
1008

1009
    def copy(self):
1010
1011
1012
1013
        return gl_space(nlat=self.paradict['nlat'],
                        nlon=self.paradict['nlon'],
                        dtype=self.dtype)

1014
    def get_shape(self):
1015
1016
1017
        return (np.int((self.paradict['nlat'] * self.paradict['nlon'])),)

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
        """
            Computes the number of degrees of freedom of the space.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            Since the :py:class:`gl_space` class only supports real-valued
            fields, the number of degrees of freedom is the number of pixels.
        """
Ultima's avatar
Ultima committed
1031
1032
1033
1034
        if split:
            return self.get_shape()
        else:
            return self.get_dim()
Marco Selig's avatar
Marco Selig committed
1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
    def get_meta_volume(self, split=False):
        """
            Calculates the meta volumes.

            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.

            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).

            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.

            Notes
            -----
            For Gauss-Legendre pixelizations, the meta volumes are the pixel
            sizes.
        """
        if not split:
            return np.float(4 * np.pi)
        else:
            mol = self.cast(1, dtype=np.float)
            return self.calc_weight(mol, power=1)

1067
    # TODO: Extend to binning/log
1068
1069
1070
1071
1072
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['nlat']
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
1073
1074
1075
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)
Marco Selig's avatar
Marco Selig committed
1076

Ultima's avatar
Ultima committed
1077
    def _check_codomain(self, codomain):
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        """
            Checks whether a given codomain is compatible to the space or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`gl_space` and
            :py:class:`lm_space`.
        """
        if codomain is None:
            return False

Ultima's avatar
Ultima committed
1099
1100
1101
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))

1102
1103
1104
        if self.comm is not codomain.comm:
            return False

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
        if isinstance(codomain, lm_space):
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = codomain.paradict['lmax']
            mmax = codomain.paradict['mmax']
            # nlon==2*lat-1
            # lmax==nlat-1
            # lmax==mmax
            if (nlon == 2*nlat-1) and (lmax == nlat-1) and (lmax == mmax):
                return True

        return False

    def get_codomain(self, **kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  an instance of the :py:class:`lm_space` class.

            Returns
            -------
            codomain : nifty.lm_space
                A compatible codomain.
        """
        nlat = self.paradict['nlat']
        lmax = nlat-1
        mmax = nlat-1
        # lmax,mmax = nlat-1,nlat-1
        if self.dtype == np.dtype('float32'):
1133
1134
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex64,
                            comm=self.comm)
1135
        else:
1136
1137
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex128,
                            comm=self.comm)
1138

1139
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
        """
            Generates random field values according to the specifications given
            by the parameters.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
Ultima's avatar
Ultima committed
1157
1158
                - "gau" (normal distribution with zero-mean and a given
                standard
Marco Selig's avatar
Marco Selig committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
Ultima's avatar
Ultima committed
1169
1170
            spec : {scalar, list, numpy.array, nifty.field, function},
            *optional*
Marco Selig's avatar
Marco Selig committed
1171
1172
1173
1174
1175
1176
1177
1178
                Power spectrum (default: 1).
            codomain : nifty.lm_space, *optional*
                A compatible codomain for power indexing (default: None).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
1179
        arg = random.parse_arguments(self, **kwargs)
1180

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
#        if(arg is None):
#            x = np.zeros(self.get_shape(), dtype=self.dtype)
#
#        elif(arg['random'] == "pm1"):
#            x = random.pm1(dtype=self.dtype, shape=self.get_shape())
#
#        elif(arg['random'] == "gau"):
#            x = random.gau(dtype=self.dtype,
#                           shape=self.get_shape(),
#                           mean=arg['mean'],
#                           std=arg['std'])
#
        if(arg['random'] == "syn"):
1194
1195
1196
1197
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = nlat - 1
            if self.dtype == np.dtype('float32'):
1198
1199
1200
                sample = gl.synfast_f(arg['spec'],
                                      nlat=nlat, nlon=nlon,
                                      lmax=lmax, mmax=lmax, alm=False)
Marco Selig's avatar
Marco Selig committed
1201
            else:
1202
1203
1204
                sample = gl.synfast(arg['spec'],
                                    nlat=nlat, nlon=nlon,
                                    lmax=lmax, mmax=lmax, alm=False)
1205
1206
            # weight if discrete
            if self.discrete:
1207
                sample = self.calc_weight(sample, power=0.5)
Marco Selig's avatar
Marco Selig committed
1208
1209

        else:
1210
1211
            sample = super(gl_space, self).get_random_values(**arg)

Marco Selig's avatar
Marco Selig committed
1212

1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
#        elif(arg['random'] == "uni"):
#            x = random.uni(dtype=self.dtype,
#                           shape=self.get_shape(),
#                           vmin=arg['vmin'],
#                           vmax=arg['vmax'])
#
#        else:
#            raise KeyError(about._errors.cstring(
#                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
        sample = self.cast(sample)
        return sample
Marco Selig's avatar
Marco Selig committed
1224

1225
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
        """
            Weights a given array with the pixel volumes to a given power.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).

            Returns
            -------
            y : numpy.ndarray
                Weighted array.
        """
theos's avatar
theos committed
1241
1242
        x = self.cast(x)

csongor's avatar
csongor committed
1243
1244
1245
1246
        # if self.datamodel != 'not':
        #     about.warnings.cprint(
        #         "WARNING: Field data is consolidated to all nodes for "
        #         "external alm2map method!")
theos's avatar
theos committed
1247
1248
        np_x = x.get_full_data()

1249
        # weight
1250
1251
1252
        nlat = self.paradict['nlat']
        nlon = self.paradict['nlon']
        if self.dtype == np.dtype('float32'):
theos's avatar
theos committed
1253
1254
1255
1256
1257
            np_result = gl.weight_f(np_x,
                                    np.array(self.distances),
                                    p=np.float32(power),
                                    nlat=nlat, nlon=nlon,
                                    overwrite=False)
Marco Selig's avatar
Marco Selig committed
1258
        else:
theos's avatar
theos committed
1259
1260
1261
1262
1263
1264
            np_result = gl.weight(np_x,
                                  np.array(self.distances),
                                  p=np.float32(power),
                                  nlat=nlat, nlon=nlon,
                                  overwrite=False)
        return self.cast(np_result)
1265

1266
    def get_weight(self, power=1):
1267
        # TODO: Check if this function is compatible to the rest of nifty
1268
1269
1270
1271
        # TODO: Can this be done more efficiently?
        dummy = self.dtype(1)
        weighted_dummy = self.calc_weight(dummy, power=power)
        return weighted_dummy / dummy
Marco Selig's avatar
Marco Selig committed
1272

1273
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
1274
1275
1276
1277
1278
1279
1280
1281
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
1282
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array

            Notes
            -----
            Only instances of the :py:class:`lm_space` or :py:class:`gl_space`
            classes are allowed as `codomain`.
        """
1295
        x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
1296

1297
1298
1299
        if codomain is None:
            codomain = self.get_codomain()

1300
1301
1302
1303
        # Check if the given codomain is suitable for the transformation
        if not self.check_codomain(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported codomain."))
Marco Selig's avatar
Marco Selig committed
1304

1305
        if isinstance(codomain, lm_space):
1306

1307
            # weight if discrete
1308
            if self.discrete:
1309
1310
                x = self.calc_weight(x, power=-0.5)
            # transform
1311
1312
1313
1314
1315
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = codomain.paradict['lmax']
            mmax = codomain.paradict['mmax']

csongor's avatar
csongor committed