nifty_operators.py 141 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
#
# Copyright (C) 2015 Max-Planck-Society
#
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Ultimanet's avatar
Ultimanet committed
21
22
23

from __future__ import division
import numpy as np
24
from nifty.config import about
25
from nifty.field import Field
26
from nifty.spaces.space import Space
27

28
from nifty_minimization import conjugate_gradient
Ultima's avatar
Ultima committed
29
from nifty_probing import trace_prober,\
30
31
32
33
    inverse_trace_prober,\
    diagonal_prober,\
    inverse_diagonal_prober
import nifty.nifty_utilities as utilities
Ultima's avatar
Ultima committed
34
import nifty.nifty_simple_math as nifty_simple_math
Ultima's avatar
Ultima committed
35

Ultimanet's avatar
Ultimanet committed
36

37
# =============================================================================
Ultimanet's avatar
Ultimanet committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

class operator(object):
    """
        ..                                                      __
        ..                                                    /  /_
        ..    ______    ______    _______   _____   ____ __  /   _/  ______    _____
        ..  /   _   | /   _   | /   __  / /   __/ /   _   / /  /   /   _   | /   __/
        .. /  /_/  / /  /_/  / /  /____/ /  /    /  /_/  / /  /_  /  /_/  / /  /
        .. \______/ /   ____/  \______/ /__/     \______|  \___/  \______/ /__/     class
        ..         /__/

        NIFTY base class for (linear) operators

        The base NIFTY operator class is an abstract class from which other
        specific operator subclasses, including those preimplemented in NIFTY
        (e.g. the diagonal operator class) must be derived.

        Parameters
        ----------
        domain : space
            The space wherein valid arguments live.
        sym : bool, *optional*
            Indicates whether the operator is self-adjoint or not
            (default: False)
        uni : bool, *optional*
            Indicates whether the operator is unitary or not
            (default: False)
        imp : bool, *optional*
            Indicates whether the incorporation of volume weights in
            multiplications is already implemented in the `multiply`
            instance methods or not (default: False)
        target : space, *optional*
            The space wherein the operator output lives (default: domain)
        para : {single object, list of objects}, *optional*
            This is a freeform list of parameters that derivatives of the
            operator class can use. Not used in the base operators.
            (default: None)

        See Also
        --------
        diagonal_operator :  An operator class for handling purely diagonal
            operators.
        power_operator : Similar to diagonal_operator but with handy features
            for dealing with diagonal operators whose diagonal
            consists of a power spectrum.
        vecvec_operator : Operators constructed from the outer product of two
            fields
        response_operator : Implements a modeled instrument response which
            translates a signal into data space.
        projection_operator : An operator that projects out one or more
            components in a basis, e.g. a spectral band
            of Fourier components.

        Attributes
        ----------
        domain : space
            The space wherein valid arguments live.
        sym : bool
            Indicates whether the operator is self-adjoint or not
        uni : bool
            Indicates whether the operator is unitary or not
        imp : bool
            Indicates whether the incorporation of volume weights in
            multiplications is already implemented in the `multiply`
            instance methods or not
        target : space
            The space wherein the operator output lives
        para : {single object, list of objects}
            This is a freeform list of parameters that derivatives of the
            operator class can use. Not used in the base operators.
    """
109
110

    def __init__(self, domain, codomain=None, sym=False, uni=False,
Ultima's avatar
Ultima committed
111
                 imp=False, target=None, cotarget=None, bare=False):
Ultimanet's avatar
Ultimanet committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        """
            Sets the attributes for an operator class instance.

            Parameters
            ----------
            domain : space
                The space wherein valid arguments live.
            sym : bool, *optional*
                Indicates whether the operator is self-adjoint or not
                (default: False)
            uni : bool, *optional*
                Indicates whether the operator is unitary or not
                (default: False)
            imp : bool, *optional*
                Indicates whether the incorporation of volume weights in
                multiplications is already implemented in the `multiply`
                instance methods or not (default: False)
            target : space, *optional*
                The space wherein the operator output lives (default: domain)
            para : {object, list of objects}, *optional*
                This is a freeform list of parameters that derivatives of the
                operator class can use. Not used in the base operators.
                (default: None)

            Returns
            -------
            None
        """
140
        # Check if the domain is realy a space
141
        if not isinstance(domain, Space):
142
143
            raise TypeError(about._errors.cstring(
                "ERROR: invalid input. domain is not a space."))
Ultimanet's avatar
Ultimanet committed
144
        self.domain = domain
145
146
        # Parse codomain
        if self.domain.check_codomain(codomain) == True:
147
148
149
            self.codomain = codomain
        else:
            self.codomain = self.domain.get_codomain()
150
151

        # Cast the symmetric and unitary input
Ultimanet's avatar
Ultimanet committed
152
153
        self.sym = bool(sym)
        self.uni = bool(uni)
Ultima's avatar
Ultima committed
154
        self.bare = bool(bare)
Ultimanet's avatar
Ultimanet committed
155

156
157
158
        # If no target is supplied, we assume that the operator is square
        # If the operator is symmetric or unitary, we know that the operator
        # must be square
159

Ultima's avatar
Ultima committed
160
        if self.sym or self.uni:
161
            target = self.domain
162
            cotarget = self.codomain
163
164
            if target is not None:
                about.warnings.cprint("WARNING: Ignoring target.")
165

166
        elif target is None:
Ultimanet's avatar
Ultimanet committed
167
            target = self.domain
168
            cotarget = self.codomain
169

170
        elif isinstance(target, Space):
171
172
173
            self.target = target
            # Parse cotarget
            if self.target.check_codomain(cotarget) == True:
174
175
176
                self.codomain = codomain
            else:
                self.codomain = self.domain.get_codomain()
177
        else:
178
            raise TypeError(about._errors.cstring(
179
                "ERROR: invalid input. Target is not a space."))
Ultimanet's avatar
Ultimanet committed
180

181
        self.imp = bool(imp)
Ultimanet's avatar
Ultimanet committed
182

Ultima's avatar
Ultima committed
183
184
185
186
187
188
189
190
191
192
    def set_val(self, new_val):
        """
            Resets the field values.

            Parameters
            ----------
            new_val : {scalar, ndarray}
                New field values either as a constant or an arbitrary array.

        """
Ultima's avatar
Ultima committed
193
        self.val = new_val
Ultima's avatar
Ultima committed
194
        return self.val
195

Ultima's avatar
Ultima committed
196
197
198
    def get_val(self):
        return self.val

199
200
    def _multiply(self, x, **kwargs):
        # > applies the operator to a given field
201
202
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'multiply'."))
Ultimanet's avatar
Ultimanet committed
203

204
205
    def _adjoint_multiply(self, x, **kwargs):
        # > applies the adjoint operator to a given field
206
207
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'adjoint_multiply'."))
Ultimanet's avatar
Ultimanet committed
208

209
210
    def _inverse_multiply(self, x, **kwargs):
        # > applies the inverse operator to a given field
211
212
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'inverse_multiply'."))
Ultimanet's avatar
Ultimanet committed
213

214
215
    def _adjoint_inverse_multiply(self, x, **kwargs):
        # > applies the inverse adjoint operator to a given field
216
217
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'adjoint_inverse_multiply'."))
Ultimanet's avatar
Ultimanet committed
218

219
220
    def _inverse_adjoint_multiply(self, x, **kwargs):
        # > applies the adjoint inverse operator to a given field
221
222
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'inverse_adjoint_multiply'."))
Ultimanet's avatar
Ultimanet committed
223

224
    def _briefing(self, x, domain, codomain, inverse):
Ultima's avatar
Ultima committed
225
226
        # make sure, that the result_field of the briefing lives in the
        # given domain and codomain
227
        result_field = Field(domain=domain, val=x, codomain=codomain,
Ultima's avatar
Ultima committed
228
                             copy=False)
229

Ultima's avatar
Ultima committed
230
        # weight if necessary
231
        if (not self.imp) and (not inverse):
Ultima's avatar
Ultima committed
232
233
            result_field = result_field.weight(power=1)
        return result_field
Ultimanet's avatar
Ultimanet committed
234

235
    def _debriefing(self, x, y, target, cotarget, inverse):
Ultima's avatar
Ultima committed
236
237
        # The debriefing takes care that the result field lives in the same
        # fourier-type domain as the input field
238
        assert(isinstance(y, Field))
Ultima's avatar
Ultima committed
239
240

        # weight if necessary
241
        if (not self.imp) and inverse:
Ultima's avatar
Ultima committed
242
243
244
245
246
247
248
249
250
251
            y = y.weight(power=-1)

        # if the operators domain as well as the target have the harmonic
        # attribute, try to match the result_field to the input_field
        if hasattr(self.domain, 'harmonic') and \
                hasattr(self.target, 'harmonic'):
            if x.domain.harmonic != y.domain.harmonic:
                y = y.transform()

        return y
Ultimanet's avatar
Ultimanet committed
252

253
    def times(self, x, **kwargs):
Ultimanet's avatar
Ultimanet committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        """
            Applies the operator to a given object

            Parameters
            ----------
            x : {scalar, ndarray, field}
                Scalars are interpreted as constant arrays, and an array will
                be interpreted as a field on the domain of the operator.

            Returns
            -------
            Ox : field
                Mapped field on the target domain of the operator.
        """
268
        # prepare
269
        y = self._briefing(x, self.domain, self.codomain, inverse=False)
270
        # apply operator
271
        y = self._multiply(y, **kwargs)
272
        # evaluate
273
        return self._debriefing(x, y, self.target, self.cotarget,
274
                                inverse=False)
Ultimanet's avatar
Ultimanet committed
275

276
277
    def __call__(self, x, **kwargs):
        return self.times(x, **kwargs)
Ultimanet's avatar
Ultimanet committed
278

279
    def adjoint_times(self, x, **kwargs):
Ultimanet's avatar
Ultimanet committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        """
            Applies the adjoint operator to a given object.

            Parameters
            ----------
            x : {scalar, ndarray, field}
                Scalars are interpreted as constant arrays, and an array will
                be interpreted as a field on the target space of the operator.

            Returns
            -------
            OAx : field
                Mapped field on the domain of the operator.

        """
295
        # check whether self-adjoint
296
        if self.sym:
297
            return self.times(x, **kwargs)
298
        # check whether unitary
299
        if self.uni:
300
            return self.inverse_times(x, **kwargs)
Ultimanet's avatar
Ultimanet committed
301

302
        # prepare
303
        y = self._briefing(x, self.target, self.cotarget, inverse=False)
304
        # apply operator
305
        y = self._adjoint_multiply(y, **kwargs)
306
        # evaluate
307
        return self._debriefing(x, y, self.domain, self.codomain,
308
                                inverse=False)
Ultimanet's avatar
Ultimanet committed
309

310
    def inverse_times(self, x, **kwargs):
Ultimanet's avatar
Ultimanet committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        """
            Applies the inverse operator to a given object.

            Parameters
            ----------
            x : {scalar, ndarray, field}
                Scalars are interpreted as constant arrays, and an array will
                be interpreted as a field on the domain space of the operator.

            Returns
            -------
            OIx : field
                Mapped field on the target space of the operator.
        """
325
        # check whether self-inverse
326
        if self.sym and self.uni:
327
            return self.times(x, **kwargs)
Ultimanet's avatar
Ultimanet committed
328

329
        # prepare
330
        y = self._briefing(x, self.target, self.cotarget, inverse=True)
331
        # apply operator
332
        y = self._inverse_multiply(y, **kwargs)
333
        # evaluate
334
        return self._debriefing(x, y, self.domain, self.codomain,
335
                                inverse=True)
Ultimanet's avatar
Ultimanet committed
336

337
    def adjoint_inverse_times(self, x, **kwargs):
Ultimanet's avatar
Ultimanet committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        """
            Applies the inverse adjoint operator to a given object.

            Parameters
            ----------
            x : {scalar, ndarray, field}
                Scalars are interpreted as constant arrays, and an array will
                be interpreted as a field on the target space of the operator.

            Returns
            -------
            OAIx : field
                Mapped field on the domain of the operator.

        """
353
        # check whether self-adjoint
354
        if self.sym:
355
            return self.inverse_times(x, **kwargs)
356
        # check whether unitary
357
        if self.uni:
358
            return self.times(x, **kwargs)
Ultimanet's avatar
Ultimanet committed
359

360
        # prepare
361
        y = self._briefing(x, self.domain, self.codomain, inverse=True)
362
        # apply operator
363
        y = self._adjoint_inverse_multiply(y, **kwargs)
364
        # evaluate
365
        return self._debriefing(x, y, self.target, self.cotarget,
366
                                inverse=True)
Ultimanet's avatar
Ultimanet committed
367

368
    def inverse_adjoint_times(self, x, **kwargs):
Ultimanet's avatar
Ultimanet committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        """
            Applies the adjoint inverse operator to a given object.

            Parameters
            ----------
            x : {scalar, ndarray, field}
                Scalars are interpreted as constant arrays, and an array will
                be interpreted as a field on the target space of the operator.

            Returns
            -------
            OIAx : field
                Mapped field on the domain of the operator.

        """
384
        # check whether self-adjoint
385
        if self.sym:
386
            return self.inverse_times(x, **kwargs)
387
        # check whether unitary
388
        if self.uni:
389
            return self.times(x, **kwargs)
Ultimanet's avatar
Ultimanet committed
390

391
        # prepare
392
        y = self._briefing(x, self.domain, self.codomain, inverse=True)
393
        # apply operator
394
        y = self._inverse_adjoint_multiply(y, **kwargs)
395
        # evaluate
396
        return self._debriefing(x, y, self.target, self.cotarget,
397
                                inverse=True)
Ultimanet's avatar
Ultimanet committed
398

Ultima's avatar
Ultima committed
399
    def tr(self, domain=None, codomain=None, random="pm1", nrun=8,
400
           varQ=False, **kwargs):
Ultimanet's avatar
Ultimanet committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        """
            Computes the trace of the operator

            Parameters
            ----------
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            ncpu : int, *optional*
                number of used CPUs to use. (default: 2)
            nrun : int, *optional*
                total number of probes (default: 8)
            nper : int, *optional*
                number of tasks performed by one process (default: 1)
            var : bool, *optional*
                Indicates whether to additionally return the probing variance
                or not (default: False).
            loop : bool, *optional*
                Indicates whether or not to perform a loop i.e., to
                parallelise (default: False)

            Returns
            -------
            tr : float
                Trace of the operator
            delta : float, *optional*
                Probing variance of the trace. Returned if `var` is True in
                of probing case.

            See Also
            --------
            probing : The class used to perform probing operations
        """
442
443
444
445
446
447
448

        return trace_prober(operator=self,
                            domain=domain,
                            codomain=codomain,
                            random=random,
                            nrun=nrun,
                            varQ=varQ,
Ultima's avatar
Ultima committed
449
450
                            **kwargs
                            )()
451

Ultima's avatar
Ultima committed
452
    def inverse_tr(self, domain=None, codomain=None, random="pm1", nrun=8,
453
                   varQ=False, **kwargs):
Ultimanet's avatar
Ultimanet committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
        """
            Computes the trace of the inverse operator

            Parameters
            ----------
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            nrun : int, *optional*
                total number of probes (default: 8)
Ultima's avatar
Ultima committed
472
            varQ : bool, *optional*
Ultimanet's avatar
Ultimanet committed
473
474
                Indicates whether to additionally return the probing variance
                or not (default: False).
Ultima's avatar
Ultima committed
475

Ultimanet's avatar
Ultimanet committed
476
477
478
479
480
481
482
483
484
485
486
487
488

            Returns
            -------
            tr : float
                Trace of the inverse operator
            delta : float, *optional*
                Probing variance of the trace. Returned if `var` is True in
                of probing case.

            See Also
            --------
            probing : The class used to perform probing operations
        """
489
490
491
492
493
494
495
496
        return inverse_trace_prober(operator=self,
                                    domain=domain,
                                    codomain=codomain,
                                    random=random,
                                    nrun=nrun,
                                    varQ=varQ,
                                    **kwargs
                                    )()
Ultimanet's avatar
Ultimanet committed
497

Ultima's avatar
Ultima committed
498
    def diag(self, domain=None, codomain=None, random="pm1", nrun=8,
499
             varQ=False, bare=False, **kwargs):
Ultimanet's avatar
Ultimanet committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        """
            Computes the diagonal of the operator via probing.

            Parameters
            ----------
            bare : bool, *optional*
                Indicatese whether the diagonal entries are `bare` or not
                (mandatory for the correct incorporation of volume weights)
                (default: False)
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            ncpu : int, *optional*
                number of used CPUs to use. (default: 2)
            nrun : int, *optional*
                total number of probes (default: 8)
            nper : int, *optional*
                number of tasks performed by one process (default: 1)
            var : bool, *optional*
                Indicates whether to additionally return the probing variance
                or not (default: False).
            save : bool, *optional*
                whether all individual probing results are saved or not
                (default: False)
            path : string, *optional*
                path wherein the results are saved (default: "tmp")
            prefix : string, *optional*
                prefix for all saved files (default: "")
            loop : bool, *optional*
                Indicates whether or not to perform a loop i.e., to
                parallelise (default: False)

            Returns
            -------
            diag : ndarray
                The matrix diagonal
            delta : float, *optional*
                Probing variance of the trace. Returned if `var` is True in
                of probing case.

            See Also
            --------
            probing : The class used to perform probing operations

            Notes
            -----
            The ambiguity of `bare` or non-bare diagonal entries is based
            on the choice of a matrix representation of the operator in
            question. The naive choice of absorbing the volume weights
            into the matrix leads to a matrix-vector calculus with the
            non-bare entries which seems intuitive, though. The choice of
            keeping matrix entries and volume weights separate deals with the
            bare entries that allow for correct interpretation of the matrix
            entries; e.g., as variance in case of an covariance operator.

        """
Ultima's avatar
Ultima committed
564

565
566
567
568
569
570
571
572
        diag = diagonal_prober(operator=self,
                               domain=domain,
                               codomain=codomain,
                               random=random,
                               nrun=nrun,
                               varQ=varQ,
                               **kwargs
                               )()
573
        if diag is None:
Ultima's avatar
Ultima committed
574
            about.warnings.cprint("WARNING: forwarding 'NoneType'.")
Ultimanet's avatar
Ultimanet committed
575
            return None
576

Ultima's avatar
Ultima committed
577
        if domain is None:
578
            domain = diag.domain
579
        # weight if ...
580
        if bare:
581
            if(isinstance(diag, tuple)):  # diag == (diag,variance)
Ultima's avatar
Ultima committed
582
583
                return (diag[0].weight(power=-1),
                        diag[1].weight(power=-1))
Ultimanet's avatar
Ultimanet committed
584
            else:
Ultima's avatar
Ultima committed
585
                return diag.weight(power=-1)
Ultimanet's avatar
Ultimanet committed
586
587
588
        else:
            return diag

589
590
    def inverse_diag(self, domain=None, codomain=None, random="pm1",
                     nrun=8, varQ=False, bare=False, **kwargs):
Ultimanet's avatar
Ultimanet committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
        """
            Computes the diagonal of the inverse operator via probing.

            Parameters
            ----------
            bare : bool, *optional*
                Indicatese whether the diagonal entries are `bare` or not
                (mandatory for the correct incorporation of volume weights)
                (default: False)
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            ncpu : int, *optional*
                number of used CPUs to use. (default: 2)
            nrun : int, *optional*
                total number of probes (default: 8)
            nper : int, *optional*
                number of tasks performed by one process (default: 1)
            var : bool, *optional*
                Indicates whether to additionally return the probing variance
                or not (default: False).
            save : bool, *optional*
                whether all individual probing results are saved or not
                (default: False)
            path : string, *optional*
                path wherein the results are saved (default: "tmp")
            prefix : string, *optional*
                prefix for all saved files (default: "")
            loop : bool, *optional*
                Indicates whether or not to perform a loop i.e., to
                parallelise (default: False)

            Returns
            -------
            diag : ndarray
                The diagonal of the inverse matrix
            delta : float, *optional*
                Probing variance of the trace. Returned if `var` is True in
                of probing case.

            See Also
            --------
            probing : The class used to perform probing operations

            Notes
            -----
            The ambiguity of `bare` or non-bare diagonal entries is based
            on the choice of a matrix representation of the operator in
            question. The naive choice of absorbing the volume weights
            into the matrix leads to a matrix-vector calculus with the
            non-bare entries which seems intuitive, though. The choice of
            keeping matrix entries and volume weights separate deals with the
            bare entries that allow for correct interpretation of the matrix
            entries; e.g., as variance in case of an covariance operator.

        """
        if(domain is None):
            domain = self.target
657
658
659
660
661
662
663
664
        diag = inverse_diagonal_prober(operator=self,
                                       domain=domain,
                                       codomain=codomain,
                                       random=random,
                                       nrun=nrun,
                                       varQ=varQ,
                                       **kwargs
                                       )()
Ultimanet's avatar
Ultimanet committed
665
        if(diag is None):
666
            about.infos.cprint("INFO: forwarding 'NoneType'.")
Ultimanet's avatar
Ultimanet committed
667
            return None
668

Ultima's avatar
Ultima committed
669
        if domain is None:
670
            domain = diag.codomain
671
        # weight if ...
672
        if bare:
673
            if(isinstance(diag, tuple)):  # diag == (diag,variance)
Ultima's avatar
Ultima committed
674
675
                return (diag[0].weight(power=-1),
                        diag[1].weight(power=-1))
Ultimanet's avatar
Ultimanet committed
676
            else:
Ultima's avatar
Ultima committed
677
                return diag.weight(power=-1)
Ultimanet's avatar
Ultimanet committed
678
679
        else:
            return diag
680

Ultimanet's avatar
Ultimanet committed
681
682
683
684
685
686
687
688
689
690
    def det(self):
        """
            Computes the determinant of the operator.

            Returns
            -------
            det : float
                The determinant

        """
691
692
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'det'."))
Ultimanet's avatar
Ultimanet committed
693
694
695
696
697
698
699
700
701
702
703

    def inverse_det(self):
        """
            Computes the determinant of the inverse operator.

            Returns
            -------
            det : float
                The determinant

        """
704
705
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'inverse_det'."))
Ultimanet's avatar
Ultimanet committed
706
707
708

    def log_det(self):
        """
709
710
            Computes the logarithm of the determinant of the operator
            (if applicable).
Ultimanet's avatar
Ultimanet committed
711
712
713
714
715
716
717

            Returns
            -------
            logdet : float
                The logarithm of the determinant

        """
718
719
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'log_det'."))
Ultimanet's avatar
Ultimanet committed
720
721
722

    def tr_log(self):
        """
723
724
            Computes the trace of the logarithm of the operator
            (if applicable).
Ultimanet's avatar
Ultimanet committed
725
726
727
728
729
730
731
732
733

            Returns
            -------
            logdet : float
                The trace of the logarithm

        """
        return self.log_det()

734
    def hat(self, bare=False, domain=None, codomain=None, **kwargs):
Ultimanet's avatar
Ultimanet committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
        """
            Translates the operator's diagonal into a field

            Parameters
            ----------
            bare : bool, *optional*
                Indicatese whether the diagonal entries are `bare` or not
                (mandatory for the correct incorporation of volume weights)
                (default: False)
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            ncpu : int, *optional*
                number of used CPUs to use. (default: 2)
            nrun : int, *optional*
                total number of probes (default: 8)
            nper : int, *optional*
                number of tasks performed by one process (default: 1)
            save : bool, *optional*
                whether all individual probing results are saved or not
                (default: False)
            path : string, *optional*
                path wherein the results are saved (default: "tmp")
            prefix : string, *optional*
                prefix for all saved files (default: "")
            loop : bool, *optional*
                Indicates whether or not to perform a loop i.e., to
                parallelise (default: False)

            Returns
            -------
            x : field
                The matrix diagonal as a field living on the operator
                domain space

            See Also
            --------
            probing : The class used to perform probing operations

            Notes
            -----
            The ambiguity of `bare` or non-bare diagonal entries is based
            on the choice of a matrix representation of the operator in
            question. The naive choice of absorbing the volume weights
            into the matrix leads to a matrix-vector calculus with the
            non-bare entries which seems intuitive, though. The choice of
            keeping matrix entries and volume weights separate deals with the
            bare entries that allow for correct interpretation of the matrix
            entries; e.g., as variance in case of an covariance operator.

        """
794
        if domain is None:
Ultimanet's avatar
Ultimanet committed
795
            domain = self.domain
796
797
798
        if codomain is None:
            codomain = self.codomain

799
        diag = self.diag(bare=bare, domain=domain, codomain=codomain,
800
801
                         var=False, **kwargs)
        if diag is None:
802
            about.infos.cprint("WARNING: forwarding 'NoneType'.")
Ultimanet's avatar
Ultimanet committed
803
            return None
804
805
        return diag

806
    def inverse_hat(self, bare=False, domain=None, codomain=None, **kwargs):
Ultimanet's avatar
Ultimanet committed
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
        """
            Translates the inverse operator's diagonal into a field

            Parameters
            ----------
            bare : bool, *optional*
                Indicatese whether the diagonal entries are `bare` or not
                (mandatory for the correct incorporation of volume weights)
                (default: False)
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            ncpu : int, *optional*
                number of used CPUs to use. (default: 2)
            nrun : int, *optional*
                total number of probes (default: 8)
            nper : int, *optional*
                number of tasks performed by one process (default: 1)
            save : bool, *optional*
                whether all individual probing results are saved or not
                (default: False)
            path : string, *optional*
                path wherein the results are saved (default: "tmp")
            prefix : string, *optional*
                prefix for all saved files (default: "")
            loop : bool, *optional*
                Indicates whether or not to perform a loop i.e., to
                parallelise (default: False)

            Returns
            -------
            x : field
                The matrix diagonal as a field living on the operator
                domain space

            See Also
            --------
            probing : The class used to perform probing operations

            Notes
            -----
            The ambiguity of `bare` or non-bare diagonal entries is based
            on the choice of a matrix representation of the operator in
            question. The naive choice of absorbing the volume weights
            into the matrix leads to a matrix-vector calculus with the
            non-bare entries which seems intuitive, though. The choice of
            keeping matrix entries and volume weights separate deals with the
            bare entries that allow for correct interpretation of the matrix
            entries; e.g., as variance in case of an covariance operator.

        """
866
        if domain is None:
Ultimanet's avatar
Ultimanet committed
867
            domain = self.target
868
869
        if codomain is None:
            codomain = self.cotarget
870
        diag = self.inverse_diag(bare=bare, domain=domain, codomain=codomain,
871
872
                                 var=False, **kwargs)
        if diag is None:
873
            about.infos.cprint("WARNING: forwarding 'NoneType'.")
Ultimanet's avatar
Ultimanet committed
874
            return None
875
876
        return diag

877
    def hathat(self, domain=None, codomain=None, **kwargs):
Ultimanet's avatar
Ultimanet committed
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
        """
            Translates the operator's diagonal into a diagonal operator

            Parameters
            ----------
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            ncpu : int, *optional*
                number of used CPUs to use. (default: 2)
            nrun : int, *optional*
                total number of probes (default: 8)
            nper : int, *optional*
                number of tasks performed by one process (default: 1)
            save : bool, *optional*
                whether all individual probing results are saved or not
                (default: False)
            path : string, *optional*
                path wherein the results are saved (default: "tmp")
            prefix : string, *optional*
                prefix for all saved files (default: "")
            loop : bool, *optional*
                Indicates whether or not to perform a loop i.e., to
                parallelise (default: False)

            Returns
            -------
            D : diagonal_operator
                The matrix diagonal as an operator

            See Also
            --------
            probing : The class used to perform probing operations

            Notes
            -----
            The ambiguity of `bare` or non-bare diagonal entries is based
            on the choice of a matrix representation of the operator in
            question. The naive choice of absorbing the volume weights
            into the matrix leads to a matrix-vector calculus with the
            non-bare entries which seems intuitive, though. The choice of
            keeping matrix entries and volume weights separate deals with the
            bare entries that allow for correct interpretation of the matrix
            entries; e.g., as variance in case of an covariance operator.

        """
932
        if domain is None:
Ultimanet's avatar
Ultimanet committed
933
            domain = self.domain
934
935
        if codomain is None:
            codomain = self.codomain
936
937

        diag = self.diag(bare=False, domain=domain, codomain=codomain,
938
                         var=False, **kwargs)
939
        if diag is None:
940
            about.infos.cprint("WARNING: forwarding 'NoneType'.")
Ultimanet's avatar
Ultimanet committed
941
            return None
942
943
        return diagonal_operator(domain=domain, codomain=codomain,
                                 diag=diag, bare=False)
Ultimanet's avatar
Ultimanet committed
944

945
    def inverse_hathat(self, domain=None, codomain=None, **kwargs):
Ultimanet's avatar
Ultimanet committed
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
        """
            Translates the inverse operator's diagonal into a diagonal
            operator

            Parameters
            ----------
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            ncpu : int, *optional*
                number of used CPUs to use. (default: 2)
            nrun : int, *optional*
                total number of probes (default: 8)
            nper : int, *optional*
                number of tasks performed by one process (default: 1)
            save : bool, *optional*
                whether all individual probing results are saved or not
                (default: False)
            path : string, *optional*
                path wherein the results are saved (default: "tmp")
            prefix : string, *optional*
                prefix for all saved files (default: "")
            loop : bool, *optional*
                Indicates whether or not to perform a loop i.e., to
                parallelise (default: False)

            Returns
            -------
            D : diagonal_operator
                The diagonal of the inverse matrix as an operator

            See Also
            --------
            probing : The class used to perform probing operations

            Notes
            -----
            The ambiguity of `bare` or non-bare diagonal entries is based
            on the choice of a matrix representation of the operator in
            question. The naive choice of absorbing the volume weights
            into the matrix leads to a matrix-vector calculus with the
            non-bare entries which seems intuitive, though. The choice of
            keeping matrix entries and volume weights separate deals with the
            bare entries that allow for correct interpretation of the matrix
            entries; e.g., as variance in case of an covariance operator.

        """
1001
        if domain is None:
Ultimanet's avatar
Ultimanet committed
1002
            domain = self.target
1003
1004
        if codomain is None:
            codomain = self.cotarget
1005

1006
        diag = self.inverse_diag(bare=False, domain=domain, codomain=codomain,
1007
1008
                                 var=False, **kwargs)
        if diag is None:
1009
            about.infos.cprint("WARNING: forwarding 'NoneType'.")
Ultimanet's avatar
Ultimanet committed
1010
            return None
1011
        return diagonal_operator(domain=domain, codomain=codomain,
1012
                                 diag=diag, bare=False)
Ultimanet's avatar
Ultimanet committed
1013
1014
1015
1016

    def __repr__(self):
        return "<nifty_core.operator>"

1017
# =============================================================================
Ultimanet's avatar
Ultimanet committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078


class diagonal_operator(operator):
    """
        ..           __   __                                                     __
        ..         /  / /__/                                                   /  /
        ..    ____/  /  __   ____ __   ____ __   ______    __ ___    ____ __  /  /
        ..  /   _   / /  / /   _   / /   _   / /   _   | /   _   | /   _   / /  /
        .. /  /_/  / /  / /  /_/  / /  /_/  / /  /_/  / /  / /  / /  /_/  / /  /_
        .. \______| /__/  \______|  \___   /  \______/ /__/ /__/  \______|  \___/  operator class
        ..                         /______/

        NIFTY subclass for diagonal operators

        Parameters
        ----------
        domain : space, *optional*
            The space wherein valid arguments live. If no domain is given
            then the diag parameter *must* be a field and the domain
            of that field is assumed. (default: None)
        diag : {scalar, ndarray, field}
            The diagonal entries of the operator. For a scalar, a constant
            diagonal is defined having the value provided. If no domain
            is given, diag must be a field. (default: 1)
        bare : bool, *optional*
            whether the diagonal entries are `bare` or not
            (mandatory for the correct incorporation of volume weights)
            (default: False)

        Notes
        -----
        The ambiguity of `bare` or non-bare diagonal entries is based
        on the choice of a matrix representation of the operator in
        question. The naive choice of absorbing the volume weights
        into the matrix leads to a matrix-vector calculus with the
        non-bare entries which seems intuitive, though. The choice of
        keeping matrix entries and volume weights separate deals with the
        bare entries that allow for correct interpretation of the matrix
        entries; e.g., as variance in case of an covariance operator.

        The inverse applications of the diagonal operator feature a ``pseudo``
        flag indicating if zero divison shall be ignored and return zero
        instead of causing an error.

        Attributes
        ----------
        domain : space
            The space wherein valid arguments live.
        val : ndarray
            A field containing the diagonal entries of the matrix.
        sym : bool
            Indicates whether the operator is self-adjoint or not
        uni : bool
            Indicates whether the operator is unitary or not
        imp : bool
            Indicates whether the incorporation of volume weights in
            multiplications is already implemented in the `multiply`
            instance methods or not
        target : space
            The space wherein the operator output lives
    """
1079

1080
    def __init__(self, domain=None, codomain=None, diag=1, bare=False):
Ultimanet's avatar
Ultimanet committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
        """
            Sets the standard operator properties and `values`.

            Parameters
            ----------
            domain : space, *optional*
                The space wherein valid arguments live. If no domain is given
                then the diag parameter *must* be a field and the domain
                of that field is assumed. (default: None)
            diag : {scalar, ndarray, field}, *optional*
                The diagonal entries of the operator. For a scalar, a constant
                diagonal is defined having the value provided. If no domain
                is given, diag must be a field. (default: 1)
            bare : bool, *optional*
                whether the diagonal entries are `bare` or not
                (mandatory for the correct incorporation of volume weights)
                (default: False)

            Returns
            -------
            None

            Notes
            -----
            The ambiguity of `bare` or non-bare diagonal entries is based
            on the choice of a matrix representation of the operator in
            question. The naive choice of absorbing the volume weights
            into the matrix leads to a matrix-vector calculus with the
            non-bare entries which seems intuitive, though. The choice of
            keeping matrix entries and volume weights separate deals with the
            bare entries that allow for correct interpretation of the matrix
            entries; e.g., as variance in case of an covariance operator.

1114
        """
1115
        # Set the domain
1116
1117
1118
1119
1120
        if domain is None:
            try:
                self.domain = diag.domain
            except(AttributeError):
                raise TypeError(about._errors.cstring(
1121
1122
                    "ERROR: Explicit or implicit, i.e. via diag domain " +
                    "inupt needed!"))
1123

1124
1125
1126
        else:
            self.domain = domain

1127
        if self.domain.check_codomain(codomain):
1128
1129
1130
            self.codomain = codomain
        else:
            self.codomain = self.domain.get_codomain()
Ultima's avatar
Ultima committed
1131

1132
        self.target = self.domain
1133
        self.cotarget = self.codomain
1134
        self.imp = True
Ultima's avatar
Ultima committed
1135
        self.set_diag(new_diag=diag, bare=bare)
Ultima's avatar
Ultima committed
1136
1137

    def set_diag(self, new_diag, bare=False):
Ultimanet's avatar
Ultimanet committed
1138
1139
1140
1141
1142
        """
            Sets the diagonal of the diagonal operator

            Parameters
            ----------
Ultima's avatar
Ultima committed
1143
            new_diag : {scalar, ndarray, field}
Ultimanet's avatar
Ultimanet committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
                The new diagonal entries of the operator. For a scalar, a
                constant diagonal is defined having the value provided. If
                no domain is given, diag must be a field.

            bare : bool, *optional*
                whether the diagonal entries are `bare` or not
                (mandatory for the correct incorporation of volume weights)
                (default: False)

            Returns
            -------
            None
        """
Ultima's avatar
Ultima committed
1157

1158
        # Set the diag-val
Ultima's avatar
Ultima committed
1159
1160
        self.val = self.domain.cast(new_diag)

1161
1162
1163
        # Set the bare-val #TODO Check with Theo
        self.bare = bare

1164
        # Weight if necessary
1165
        if bare:
1166
1167
1168
            self.val = self.domain.calc_weight(self.val, power=1)

        # Check complexity attributes
Ultima's avatar
Ultima committed
1169
1170
1171
1172
        if self.domain.calc_real_Q(self.val) == True:
            self.sym = True
        else:
            self.sym = False
1173
1174

        # Check if unitary, i.e. identity
Ultima's avatar
Ultima committed
1175
1176
1177
        if (self.val == 1).all() == True:
            self.uni = True
        else:
1178
1179
1180
            self.uni = False

    def _multiply(self, x, **kwargs):
1181
        # applies the operator to a given field
1182
        y = x.copy(domain=self.target, codomain=self.cotarget)
Ultima's avatar
Ultima committed
1183
        y *= self.get_val()
1184
1185
1186
        return y

    def _adjoint_multiply(self, x, **kwargs):
1187
        # applies the adjoint operator to a given field
1188
        y = x.copy(domain=self.domain, codomain=self.codomain)
Ultima's avatar
Ultima committed
1189
        y *= self.get_val().conjugate()
1190
        return y
Ultima's avatar
Ultima committed
1191

1192
    def _inverse_multiply(self, x, pseudo=False, **kwargs):
1193
        # applies the inverse operator to a given field
1194
        y = x.copy(domain=self.domain, codomain=self.codomain)
Ultima's avatar
Ultima committed
1195
        if (self.get_val() == 0).any():
1196
            if not pseudo:
Ultima's avatar
Ultima committed
1197
1198
1199
                raise AttributeError(about._errors.cstring(
                    "ERROR: singular operator."))
            else:
1200
1201
#                raise NotImplementedError(
#                    "ERROR: function not yet implemented!")
Ultima's avatar
Ultima committed
1202
                y /= self.get_val()
1203
1204
1205
1206
1207
                # TODO: implement this
                # the following code does not work. np.isnan is needed,
                # but on a level of fields
#                y[y == np.nan] = 0
#                y[y == np.inf] = 0
Ultima's avatar
Ultima committed
1208
1209
1210
1211
        else:
            y /= self.get_val()
        return y

1212
1213
1214
    def _adjoint_inverse_multiply(self, x, pseudo=False, **kwargs):
        # > applies the inverse adjoint operator to a given field
        y = x.copy(domain=self.target, codomain=self.cotarget)
Ultima's avatar
Ultima committed
1215
        if (self.get_val() == 0).any():
1216
            if not pseudo:
Ultima's avatar
Ultima committed
1217
1218
1219
                raise AttributeError(about._errors.cstring(
                    "ERROR: singular operator."))
            else:
1220
1221
1222
1223
1224
                raise NotImplementedError(
                    "ERROR: function not yet implemented!")
                # TODO: implement this
                # the following code does not work. np.isnan is needed,
                # but on a level of fields
Ultima's avatar
Ultima committed
1225
1226
1227
1228
1229
                y /= self.get_val().conjugate()
                y[y == np.nan] = 0
                y[y == np.inf] = 0
        else:
            y /= self.get_val().conjugate()
1230
1231
1232
1233
1234
        return y

    def _inverse_adjoint_multiply(self, x, pseudo=False, **kwargs):
        # > applies the adjoint inverse operator to a given field
        return self._adjoint_inverse_multiply(x, pseudo=pseudo, **kwargs)
Ultimanet's avatar
Ultimanet committed
1235

Ultima's avatar
Ultima committed
1236
    def tr(self, varQ=False, **kwargs):
Ultimanet's avatar
Ultimanet committed
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
        """
            Computes the trace of the operator

            Parameters
            ----------
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            ncpu : int, *optional*
                number of used CPUs to use. (default: 2)
            nrun : int, *optional*
                total number of probes (default: 8)
            nper : int, *optional*
                number of tasks performed by one process (default: 1)
            var : bool, *optional*
                Indicates whether to additionally return the probing variance
                or not (default: False).
            loop : bool, *optional*
                Indicates whether or not to perform a loop i.e., to
                parallelise (default: False)

            Returns
            -------
            tr : float
                Trace of the operator
            delta : float, *optional*
                Probing variance of the trace. Returned if `var` is True in
                of probing case.

Ultima's avatar
Ultima committed
1274
        """
1275

Ultima's avatar
Ultima committed
1276
1277
        tr = self.domain.unary_operation(self.val, 'sum')

1278
        if varQ:
1279
            return (tr, 1)
Ultima's avatar
Ultima committed
1280
1281
        else:
            return tr
1282

Ultima's avatar
Ultima committed
1283
    def inverse_tr(self, varQ=False, **kwargs):
Ultimanet's avatar
Ultimanet committed
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
        """
            Computes the trace of the inverse operator

            Parameters
            ----------
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            ncpu : int, *optional*
                number of used CPUs to use. (default: 2)
            nrun : int, *optional*
                total number of probes (default: 8)
            nper : int, *optional*
                number of tasks performed by one process (default: 1)
            var : bool, *optional*
                Indicates whether to additionally return the probing variance
                or not (default: False).
            loop : bool, *optional*
                Indicates whether or not to perform a loop i.e., to
                parallelise (default: False)

            Returns
            -------
            tr : float
                Trace of the inverse operator
            delta : float, *optional*
                Probing variance of the trace. Returned if `var` is True in
                of probing case.

        """
Ultima's avatar
Ultima committed
1322
1323
1324
1325
        if (self.get_val() == 0).any():
            raise AttributeError(about._errors.cstring(
                "ERROR: singular operator."))
        inverse_tr = self.domain.unary_operation(
1326
1327
1328
            self.domain.binary_operation(self.val, 1, 'rdiv', cast=0),
            'sum')

1329
        if varQ:
1330
            return (inverse_tr, 1)
Ultima's avatar
Ultima committed
1331
1332
        else:
            return inverse_tr
1333
1334

    def diag(self, bare=False, domain=None, codomain=None,
1335
             varQ=False, **kwargs):
Ultimanet's avatar
Ultimanet committed
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
        """
            Computes the diagonal of the operator.

            Parameters
            ----------
            bare : bool, *optional*
                Indicatese whether the diagonal entries are `bare` or not
                (mandatory for the correct incorporation of volume weights)
                (default: False)
            domain : space, *optional*
                space wherein the probes live (default: self.domain)
            target : space, *optional*
                space wherein the transform of the probes live
                (default: None, applies target of the domain)
            random : string, *optional*
                Specifies the pseudo random number generator. Valid
                options are "pm1" for a random vector of +/-1, or "gau"
                for a random vector with entries drawn from a Gaussian
                distribution with zero mean and unit variance.
                (default: "pm1")
            ncpu : int, *optional*
                number of used CPUs to use. (default: 2)
            nrun : int, *optional*
                total number of probes (default: 8)
            nper : int, *optional*
                number of tasks performed by one process (default: 1)
            var : bool, *optional*
                Indicates whether to additionally return the probing variance
                or not (default: False).
            save : bool, *optional*
                whether all individual probing results are saved or not
                (default: False)
            path : string, *optional*
                path wherein the results are saved (default: "tmp")
            prefix : string, *optional*
                prefix for all saved files (default: "")
            loop : bool, *optional*
                Indicates whether or not to perform a loop i.e., to
                parallelise (default: False)

            Returns
            -------
            diag : ndarray
                The matrix diagonal
            delta : float, *optional*
                Probing variance of the trace. Returned if `var` is True in
                of probing case.

            Notes
            -----
            The ambiguity of `bare` or non-bare diagonal entries is based
            on the choice of a matrix representation of the operator in
            question. The naive choice of absorbing the volume weights
            into the matrix leads to a matrix-vector calculus with the
            non-bare entries which seems intuitive, though. The choice of
            keeping matrix entries and volume weights separate deals with the
            bare entries that allow for correct interpretation of the matrix
            entries; e.g., as variance in case of an covariance operator.

        """
1396

1397
        if (domain is None) or (domain == self.domain):
1398
            if bare:
1399
                diag_val