field.py 31.3 KB
Newer Older
csongor's avatar
csongor committed
1 2 3
from __future__ import division
import numpy as np

4
from d2o import distributed_data_object,\
5
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
6

7 8 9
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
csongor's avatar
csongor committed
10

11
from nifty.field_types import FieldType
12

13
from nifty.spaces.space import Space
14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17 18
from nifty.random import Random

csongor's avatar
csongor committed
19 20

POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
theos's avatar
theos committed
21
COMM = getattr(gdi[gc['mpi_module']], gc['default_comm'])
csongor's avatar
csongor committed
22 23


24
class Field(object):
theos's avatar
theos committed
25
    # ---Initialization methods---
26

theos's avatar
theos committed
27
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
28
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
29

30
        self.domain = self._parse_domain(domain=domain, val=val)
31
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
32

33
        self.field_type = self._parse_field_type(field_type, val=val)
34

theos's avatar
theos committed
35 36 37 38 39 40
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
41

theos's avatar
theos committed
42
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
43
                                       val=val,
theos's avatar
theos committed
44 45
                                       domain=self.domain,
                                       field_type=self.field_type)
46

47 48 49
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
50 51 52

        self.set_val(new_val=val, copy=copy)

53
    def _parse_domain(self, domain, val=None):
54
        if domain is None:
55 56 57 58
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
59
        elif isinstance(domain, Space):
60
            domain = (domain,)
61 62 63
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
64
        for d in domain:
65
            if not isinstance(d, Space):
csongor's avatar
csongor committed
66
                raise TypeError(about._errors.cstring(
67 68
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
69 70
        return domain

71
    def _parse_field_type(self, field_type, val=None):
72
        if field_type is None:
73 74 75 76
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
77
        elif isinstance(field_type, FieldType):
78
            field_type = (field_type,)
79 80
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
81
        for ft in field_type:
82
            if not isinstance(ft, FieldType):
83
                raise TypeError(about._errors.cstring(
84
                    "ERROR: Given object is not a nifty.FieldType."))
85 86
        return field_type

theos's avatar
theos committed
87 88 89 90 91 92 93 94 95 96
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
97

98
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
99
        if dtype is None:
100 101 102
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
103 104 105 106 107 108 109
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
110

theos's avatar
theos committed
111
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
112

theos's avatar
theos committed
113
        return dtype
114

115 116
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
117
            if isinstance(val, distributed_data_object):
118
                distribution_strategy = val.distribution_strategy
119
            elif isinstance(val, Field):
120
                distribution_strategy = val.distribution_strategy
121 122
            else:
                about.warnings.cprint("WARNING: Datamodel set to default!")
123 124
                distribution_strategy = gc['default_distribution_strategy']
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['all']:
125
            raise ValueError(about._errors.cstring(
126 127
                    "ERROR: Invalid distribution_strategy!"))
        return distribution_strategy
128 129

    # ---Factory methods---
130

131 132
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
133
                    distribution_strategy=None, **kwargs):
134 135
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
136
                distribution_strategy=distribution_strategy)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

#        elif random_type == 'syn':
#            pass

csongor's avatar
csongor committed
175
        else:
176 177
            raise KeyError(about._errors.cstring(
                "ERROR: unsupported random key '" + str(random_type) + "'."))
csongor's avatar
csongor committed
178

179
        return random_arguments
csongor's avatar
csongor committed
180

181 182 183 184 185 186 187 188 189 190 191 192 193
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for analysis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

216 217 218 219 220 221
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

222 223 224 225
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

226 227 228 229 230
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

231 232
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
233
                                  distribution_strategy=distribution_strategy,
234 235
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
236

237
        # extract pindex and rho from power_domain
238 239
        pindex = power_domain.pindex
        rho = power_domain.rho
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
            raise ValueError("ERROR: pindex's distribution strategy must be "
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
                    "ERROR: A slicing distributor shall not be reshaped to "
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

317
    def power_synthesize(self, spaces=None, real_signal=True):
318
        # assert that all spaces in `self.domain` are either of signal-type or
319 320
        # power_space instances
        for sp in self.domain:
321
            if not sp.harmonic and not isinstance(sp, PowerSpace):
322 323 324 325
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for synthesis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
            raise ValueError(about._errors.cstring(
                "ERROR: A PowerSpace is needed for field synthetization."))

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

362 363 364 365 366 367
        result_list = [self.__class__.from_random(
                             'normal',
                             result_domain,
                             dtype=harmonic_domain.dtype,
                             field_type=self.field_type,
                             distribution_strategy=self.distribution_strategy)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
            about.warnings.cprint(
                "WARNING: The distribution_stragey of pindex does not fit the "
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
        local_spec = self.val.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
        local_rescaler = local_spec[local_blow_up]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
428

theos's avatar
theos committed
429
    # ---Properties---
430

theos's avatar
theos committed
431
    def set_val(self, new_val=None, copy=False):
432 433
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
434 435 436
            new_val = new_val.copy()
        self._val = new_val
        return self._val
csongor's avatar
csongor committed
437

438 439
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
440
            return self._val.copy()
441
        else:
theos's avatar
theos committed
442
            return self._val
csongor's avatar
csongor committed
443

theos's avatar
theos committed
444 445 446
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
447

theos's avatar
theos committed
448 449 450
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
451

452 453
    @property
    def shape(self):
454 455 456 457 458 459 460
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
461

462
        return global_shape
csongor's avatar
csongor committed
463

464 465
    @property
    def dim(self):
theos's avatar
theos committed
466 467 468 469 470 471 472
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
473

474 475
    @property
    def dof(self):
theos's avatar
theos committed
476 477 478 479 480 481 482 483
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
484
        try:
theos's avatar
theos committed
485
            return reduce(lambda x, y: x * y, volume_tuple)
486
        except TypeError:
theos's avatar
theos committed
487
            return 0
488

theos's avatar
theos committed
489
    # ---Special unary/binary operations---
490

csongor's avatar
csongor committed
491 492 493
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
494 495
        else:
            dtype = np.dtype(dtype)
496

theos's avatar
theos committed
497
        casted_x = self._actual_cast(x, dtype=dtype)
498 499

        for ind, sp in enumerate(self.domain):
500
            casted_x = sp.complement_cast(casted_x,
theos's avatar
theos committed
501
                                          axes=self.domain_axes[ind])
502 503 504

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.complement_cast(casted_x,
theos's avatar
theos committed
505
                                          axes=self.field_type_axes[ind])
506 507

        return casted_x
csongor's avatar
csongor committed
508

theos's avatar
theos committed
509
    def _actual_cast(self, x, dtype=None):
510
        if isinstance(x, Field):
csongor's avatar
csongor committed
511 512 513 514 515
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

516
        return_x = distributed_data_object(
517 518 519
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
520 521
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
522 523

    def copy(self, domain=None, dtype=None, field_type=None,
524
             distribution_strategy=None):
theos's avatar
theos committed
525
        copied_val = self.get_val(copy=True)
526 527 528 529 530
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                field_type=field_type,
                                distribution_strategy=distribution_strategy)
theos's avatar
theos committed
531 532
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
533

theos's avatar
theos committed
534
    def copy_empty(self, domain=None, dtype=None, field_type=None,
535
                   distribution_strategy=None):
theos's avatar
theos committed
536 537
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
538
        else:
theos's avatar
theos committed
539
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
540

theos's avatar
theos committed
541 542 543 544
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
545

theos's avatar
theos committed
546 547 548 549
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
550

551 552
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
553

theos's avatar
theos committed
554 555 556 557 558 559 560 561 562 563 564 565 566 567
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
568
                distribution_strategy == self.distribution_strategy):
theos's avatar
theos committed
569 570 571 572 573
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
574
                              distribution_strategy=distribution_strategy)
theos's avatar
theos committed
575
        return new_field
csongor's avatar
csongor committed
576

theos's avatar
theos committed
577 578 579 580 581 582 583 584 585 586 587 588 589 590
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
            if key != 'val':
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
591
        if inplace:
csongor's avatar
csongor committed
592 593 594 595
            new_field = self
        else:
            new_field = self.copy_empty()

596
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
597

csongor's avatar
csongor committed
598
        if spaces is None:
theos's avatar
theos committed
599 600 601
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
602

603
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
604 605 606 607 608
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
609 610

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
611 612
        return new_field

theos's avatar
theos committed
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

642
    def norm(self, q=2):
csongor's avatar
csongor committed
643 644 645 646 647 648 649 650 651 652 653 654 655 656
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
657
        if q == 2:
658
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
659
        else:
660
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

677
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
678
        new_val = new_val.conjugate()
679
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
680 681 682

        return work_field

theos's avatar
theos committed
683
    # ---General unary/contraction methods---
684

theos's avatar
theos committed
685 686
    def __pos__(self):
        return self.copy()
687

theos's avatar
theos committed
688 689 690 691
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
692 693
        return return_field

theos's avatar
theos committed
694 695 696 697 698
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
699

theos's avatar
theos committed
700 701 702 703 704 705
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
706

theos's avatar
theos committed
707 708 709 710
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
711

theos's avatar
theos committed
712 713 714 715
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
716
        try:
theos's avatar
theos committed
717
            axes_list = reduce(lambda x, y: x+y, axes_list)
718
        except TypeError:
theos's avatar
theos committed
719
            axes_list = ()
csongor's avatar
csongor committed
720

theos's avatar
theos committed
721 722 723
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
724

theos's avatar
theos committed
725 726 727
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
728
        else:
theos's avatar
theos committed
729 730 731 732 733 734 735 736 737 738 739
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
740

theos's avatar
theos committed
741 742
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
743

theos's avatar
theos committed
744 745
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
746

theos's avatar
theos committed
747 748
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
749

theos's avatar
theos committed
750 751
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
752

theos's avatar
theos committed
753 754
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
755

theos's avatar
theos committed
756 757
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
758

theos's avatar
theos committed
759 760
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
761

theos's avatar
theos committed
762 763
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
764

theos's avatar
theos committed
765 766
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
767

theos's avatar
theos committed
768 769
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
770

theos's avatar
theos committed
771 772
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
773

theos's avatar
theos committed
774
    # ---General binary methods---
csongor's avatar
csongor committed
775

theos's avatar
theos committed
776
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
777
        # if other is a field, make sure that the domains match
778
        if isinstance(other, Field):
theos's avatar
theos committed
779 780 781 782
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
783
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
784 785 786 787 788 789
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
790

theos's avatar
theos committed
791 792
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
793 794 795 796 797 798

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
799
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
800 801 802
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
803
        return self._binary_helper(other, op='__add__')
804

805
    def __radd__(self, other):
theos's avatar
theos committed
806
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
807 808

    def __iadd__(self, other):
theos's avatar
theos committed
809
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
810 811

    def __sub__(self, other):
theos's avatar
theos committed
812
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
813 814

    def __rsub__(self, other):
theos's avatar
theos committed
815
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
816 817

    def __isub__(self, other):
theos's avatar
theos committed
818
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
819 820

    def __mul__(self, other):
theos's avatar
theos committed
821
        return self._binary_helper(other, op='__mul__')
822

823
    def __rmul__(self, other):
theos's avatar
theos committed
824
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
825 826

    def __imul__(self, other):
theos's avatar
theos committed
827
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
828 829

    def __div__(self, other):
theos's avatar
theos committed
830
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
831 832

    def __rdiv__(self, other):
theos's avatar
theos committed
833
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
834 835

    def __idiv__(self, other):
theos's avatar
theos committed
836
        return self._binary_helper(other, op='__idiv__', inplace=True)
837

csongor's avatar
csongor committed
838
    def __pow__(self, other):
theos's avatar
theos committed
839
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
840 841

    def __rpow__(self, other):
theos's avatar
theos committed
842
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
843 844

    def __ipow__(self, other):
theos's avatar
theos committed
845
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
846 847

    def __lt__(self, other):
theos's avatar
theos committed
848
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
849 850

    def __le__(self, other):
theos's avatar
theos committed
851
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
852 853 854 855 856

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
857
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
858 859 860 861 862

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
863
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
864 865

    def __ge__(self, other):
theos's avatar
theos committed
866
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
867 868

    def __gt__(self, other):
theos's avatar
theos committed
869 870 871 872 873 874 875 876 877 878 879 880 881
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
882

883

884
class EmptyField(Field):
csongor's avatar
csongor committed
885 886
    def __init__(self):
        pass