nfft.py 2.93 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2018-2019 Max-Planck-Society
#
# Resolve is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np

import nifty5 as ift


Philipp Arras's avatar
Philipp Arras committed
23
class NFFT(ift.LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    """Performs a non-equidistant Fourier transform, i.e. a Fourier transform
    followed by a degridding operation.

    Parameters
    ----------
    domain : RGSpace
        Domain of the operator. It has to be two-dimensional and have shape
        `(2N, 2N)`. The coordinates of the lower left pixel of the dirty image
        are `(-N,-N)`, and of the upper right pixel `(N-1,N-1)`.
    uv : numpy.ndarray
        2D numpy array of type float64 and shape (M,2), where M is the number
        of measurements. uv[i,0] and uv[i,1] contain the u and v coordinates
        of measurement #i, respectively. All coordinates must lie in the range
        `[-0.5; 0,5[`.
    """
    def __init__(self, domain, uv):
        from pynfft.nfft import NFFT
        npix = domain.shape[0]
        assert npix == domain.shape[1]
        assert len(domain.shape) == 2
        assert type(npix) == int, "npix must be integer"
        assert npix > 0 and (
            npix % 2) == 0, "npix must be an even, positive integer"
        assert isinstance(uv, np.ndarray), "uv must be a Numpy array"
        assert uv.dtype == np.float64, "uv must be an array of float64"
        assert uv.ndim == 2, "uv must be a 2D array"
        assert uv.shape[0] > 0, "at least one point needed"
        assert uv.shape[1] == 2, "the second dimension of uv must be 2"
        assert np.all(uv >= -0.5) and np.all(uv <= 0.5),\
            "all coordinates must lie between -0.5 and 0.5"

        self._domain = ift.DomainTuple.make(domain)
        self._target = ift.DomainTuple.make(
            ift.UnstructuredDomain(uv.shape[0]))
        self._capability = self.TIMES | self.ADJOINT_TIMES

        self.npt = uv.shape[0]
        self.plan = NFFT(self.domain.shape, self.npt, m=6)
        self.plan.x = uv
        self.plan.precompute()

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            self.plan.f_hat = x.to_global_data()
            res = self.plan.trafo().copy()
        else:
            self.plan.f = x.to_global_data()
            res = self.plan.adjoint().copy()
        return ift.Field.from_global_data(self._tgt(mode), res)