field.py 47.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20
21
22
from builtins import zip
from builtins import str
from builtins import range
23
24

import itertools
csongor's avatar
csongor committed
25
26
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
27
28
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
29

30
from d2o import distributed_data_object,\
31
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
32

Martin Reinecke's avatar
Martin Reinecke committed
33
from .config import nifty_configuration as gc
csongor's avatar
csongor committed
34

Martin Reinecke's avatar
Martin Reinecke committed
35
from .domain_object import DomainObject
36

Martin Reinecke's avatar
Martin Reinecke committed
37
from .spaces.power_space import PowerSpace
csongor's avatar
csongor committed
38

Martin Reinecke's avatar
Martin Reinecke committed
39
40
from . import nifty_utilities as utilities
from .random import Random
Martin Reinecke's avatar
Martin Reinecke committed
41
from functools import reduce
42

csongor's avatar
csongor committed
43

Jait Dixit's avatar
Jait Dixit committed
44
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
45
46
47
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
48
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
49
50
    In addition Field has methods to work with power-spectra.

51
52
53
54
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
55
        LMSpace or PowerSpace. It might also be a FieldArray, which is
56
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
57

58
59
60
61
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
62

63
64
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
65

66
67
68
69
70
71
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
72

73
74
75
76
77
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
78

79
80
81
82
83
84
85
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
86
87
        Name of the used distribution_strategy.

88
89
90
91
92
93
94
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
95

96
97
98
99
100
101
102
103
104
105
106
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
107

108
109
110
111
112
    See Also
    --------
    distributed_data_object

    """
113

Theo Steininger's avatar
Theo Steininger committed
114
    # ---Initialization methods---
115

116
    def __init__(self, domain=None, val=None, dtype=None,
117
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
118

119
        self.domain = self._parse_domain(domain=domain, val=val)
120
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
121

Theo Steininger's avatar
Theo Steininger committed
122
        self.dtype = self._infer_dtype(dtype=dtype,
123
                                       val=val)
124

125
126
127
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
128

129
130
131
132
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
133

134
    def _parse_domain(self, domain, val=None):
135
        if domain is None:
136
137
138
139
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
140
        elif isinstance(domain, DomainObject):
141
            domain = (domain,)
142
143
144
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
145
        for d in domain:
146
            if not isinstance(d, DomainObject):
147
148
                raise TypeError(
                    "Given domain contains something that is not a "
149
                    "DomainObject instance.")
csongor's avatar
csongor committed
150
151
        return domain

Theo Steininger's avatar
Theo Steininger committed
152
153
154
155
156
157
158
159
160
161
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
162

163
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
164
        if dtype is None:
165
            try:
166
                dtype = val.dtype
167
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
168
169
170
                try:
                    if val is None:
                        raise TypeError
171
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
172
                except(TypeError):
173
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
174
        else:
175
            dtype = np.dtype(dtype)
176

177
178
        dtype = np.result_type(dtype, np.float)

Theo Steininger's avatar
Theo Steininger committed
179
        return dtype
180

181
182
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
183
            if isinstance(val, distributed_data_object):
184
                distribution_strategy = val.distribution_strategy
185
            elif isinstance(val, Field):
186
                distribution_strategy = val.distribution_strategy
187
            else:
188
                self.logger.debug("distribution_strategy set to default!")
189
                distribution_strategy = gc['default_distribution_strategy']
190
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
191
192
193
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
194
        return distribution_strategy
195
196

    # ---Factory methods---
197

198
    @classmethod
199
    def from_random(cls, random_type, domain=None, dtype=None,
200
                    distribution_strategy=None, **kwargs):
201
202
203
204
205
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
206

207
208
209
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
210

211
212
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
213

214
215
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
216

217
218
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
219

220
221
222
223
224
225
226
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
227
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
228

229
230

        """
Theo Steininger's avatar
Theo Steininger committed
231

232
        # create a initially empty field
233
        f = cls(domain=domain, dtype=dtype,
234
                distribution_strategy=distribution_strategy)
235
236
237
238
239
240
241

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
242
        # extract the distributed_data_object from f and apply the appropriate
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
269
        else:
270
271
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
272

273
        return random_arguments
csongor's avatar
csongor committed
274

275
276
    # ---Powerspectral methods---

Theo Steininger's avatar
Theo Steininger committed
277
    def power_analyze(self, spaces=None, logarithmic=False, nbin=None,
278
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
279
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
280

Theo Steininger's avatar
Theo Steininger committed
281
282
283
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
284
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
285
        field, corresponding to the square root of the power spectrum.
286
287
288

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
289
290
291
292
293
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
294
            {default : False}
Theo Steininger's avatar
Theo Steininger committed
295
296
297
298
299
300
301
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
            if binbounds==None : bins are inferred. Overwrites nbins and log
302
303
304
305
306
307
308
309
310
311
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
312

313
314
315
316
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
317
318
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
319
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
320

321
322
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
323
        out : Field
324
325
326
327
328
329
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
330

331
        """
Theo Steininger's avatar
Theo Steininger committed
332

Theo Steininger's avatar
Theo Steininger committed
333
        # check if all spaces in `self.domain` are either harmonic or
334
335
336
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
337
                self.logger.info(
338
                    "Field has a space in `domain` which is neither "
339
340
341
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
342
343
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
344
            spaces = list(range(len(self.domain)))
345
346

        if len(spaces) == 0:
347
348
            raise ValueError(
                "No space for analysis specified.")
349

350
351
352
353
354
355
356
357
358
359
360
361
362
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
363
364

        for space_index in spaces:
365
366
            parts = [self._single_power_analyze(
                                work_field=part,
367
368
369
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
370
371
                                binbounds=binbounds)
                     for part in parts]
372

373
374
375
376
377
378
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
379
380
381

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
382
                              binbounds):
383

384
        if not work_field.domain[space_index].harmonic:
385
386
            raise ValueError(
                "The analyzed space must be harmonic.")
387

388
389
390
391
392
393
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

394
        distribution_strategy = \
395
396
            work_field.val.get_axes_local_distribution_strategy(
                work_field.domain_axes[space_index])
397

398
        harmonic_domain = work_field.domain[space_index]
399
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
400
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
401
402
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
403

404
        # extract pindex and rho from power_domain
405
406
        pindex = power_domain.pindex
        rho = power_domain.rho
407

408
409
410
411
412
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
                                pindex=pindex,
                                rho=rho,
                                axes=work_field.domain_axes[space_index])
413
414

        # create the result field and put power_spectrum into it
415
        result_domain = list(work_field.domain)
416
        result_domain[space_index] = power_domain
417
        result_dtype = power_spectrum.dtype
418

419
        result_field = work_field.copy_empty(
420
                   domain=result_domain,
421
                   dtype=result_dtype,
422
                   distribution_strategy=power_spectrum.distribution_strategy)
423
424
425
426
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

427
428
    @classmethod
    def _calculate_power_spectrum(cls, field_val, pindex, rho, axes=None):
429
430

        if axes is not None:
431
432
433
434
435
436
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            target_strategy=field_val.distribution_strategy,
                            axes=axes)
        power_spectrum = pindex.bincount(weights=field_val,
437
438
439
440
441
442
443
444
445
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

446
447
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
448
449
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
450
            raise ValueError("pindex's distribution strategy must be "
451
452
453
454
455
456
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
457
                    "A slicing distributor shall not be reshaped to "
458
459
460
461
462
463
464
465
466
467
468
469
470
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

471
472
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
473
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
474

Theo Steininger's avatar
Theo Steininger committed
475
476
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
477

478
479
480
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
481
482
483
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
484
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
485
486
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
487
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
488
489
490
491
492
493
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
494
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
495
496
497
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
498

499
500
501
502
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
503
            stored in the `spaces` in `self`.
504

Theo Steininger's avatar
Theo Steininger committed
505
506
507
508
509
510
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

511
512
513
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
514
515
516
517
518

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

519
        """
Theo Steininger's avatar
Theo Steininger committed
520

521
522
523
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
524
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
525
            spaces = list(range(len(self.domain)))
Theo Steininger's avatar
Theo Steininger committed
526

527
528
529
530
531
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
532
533
534

        # create the result domain
        result_domain = list(self.domain)
535
536
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
537
            harmonic_domain = power_space.harmonic_partner
538
            result_domain[power_space_index] = harmonic_domain
539
540
541

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
542
        if real_power:
543
            result_list = [None]
544
545
        else:
            result_list = [None, None]
546

547
548
        result_list = [self.__class__.from_random(
                             'normal',
549
550
551
                             mean=mean,
                             std=std,
                             domain=result_domain,
552
                             dtype=np.complex,
553
                             distribution_strategy=self.distribution_strategy)
554
555
556
557
558
559
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
560
561

        spec = self.val.get_full_data()
562
563
        spec = np.sqrt(spec)

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

580
        if real_signal:
581
            result_val_list = [self._hermitian_decomposition(
582
583
584
585
586
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
587
                               for result_val in result_val_list]
588
589
590
591
592
593
594

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
595
        else:
596
597
598
599
            result = result_list[0] + 1j*result_list[1]

        return result

600
    @staticmethod
601
602
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
603
604
        # hermitianize for the first space
        (h, a) = domain[spaces[0]].hermitian_decomposition(
605
606
607
                       val,
                       domain_axes[spaces[0]],
                       preserve_gaussian_variance=preserve_gaussian_variance)
608
        # hermitianize all remaining spaces using the iterative formula
Martin Reinecke's avatar
Martin Reinecke committed
609
        for space in range(1, len(spaces)):
610
611
612
            (hh, ha) = domain[space].hermitian_decomposition(
                                              h,
                                              domain_axes[space],
613
                                              preserve_gaussian_variance=False)
614
615
616
            (ah, aa) = domain[space].hermitian_decomposition(
                                              a,
                                              domain_axes[space],
617
                                              preserve_gaussian_variance=False)
618
            c = (hh - ha - ah + aa).conjugate()
619
620
621
            full = (hh + ha + ah + aa)
            h = (full + c)/2.
            a = (full - c)/2.
622
623

        # correct variance
624

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
        # in principle one must not correct the variance for the fixed
        # points of the hermitianization. However, for a complex field
        # the input field loses half of its power at its fixed points
        # in the `hermitian` part. Hence, here a factor of sqrt(2) is
        # also necessary!
        # => The hermitianization can be done on a space level since either
        # nothing must be done (LMSpace) or ALL points need a factor of sqrt(2)
        # => use the preserve_gaussian_variance flag in the
        # hermitian_decomposition method above.

        # This code is for educational purposes:
#        fixed_points = [domain[i].hermitian_fixed_points() for i in spaces]
#        # check if there was at least one flipping during hermitianization
#        flipped_Q = np.any([fp is not None for fp in fixed_points])
#        # if the array got flipped, correct the variance
#        if flipped_Q:
#            h *= np.sqrt(2)
#            a *= np.sqrt(2)
#
644
645
646
647
648
649
650
651
652
653
654
655
656
#            fixed_points = [[fp] if fp is None else fp for fp in fixed_points]
#            for product_point in itertools.product(*fixed_points):
#                slice_object = np.array((slice(None), )*len(val.shape),
#                                        dtype=np.object)
#                for i, sp in enumerate(spaces):
#                    point_component = product_point[i]
#                    if point_component is None:
#                        point_component = slice(None)
#                    slice_object[list(domain_axes[sp])] = point_component
#
#                slice_object = tuple(slice_object)
#                h[slice_object] /= np.sqrt(2)
#                a[slice_object] /= np.sqrt(2)
657
658
659

        return (h, a)

660
661
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
662
663
664

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
665
        pindex = power_space.pindex
666
667
668
669
670
671
672
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
673
            self.logger.warn(
674
                "The distribution_stragey of pindex does not fit the "
675
676
677
678
679
680
681
682
683
684
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
685
686
        local_rescaler = spec[local_blow_up]
        return local_rescaler
687

Theo Steininger's avatar
Theo Steininger committed
688
    # ---Properties---
689

Theo Steininger's avatar
Theo Steininger committed
690
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
691
        """ Sets the fields distributed_data_object.
692
693
694

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
695
        new_val : scalar, array-like, Field, None *optional*
696
697
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
698

699
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
700
701
            If False, Field tries to not copy the input data but use it
            directly.
702
703
704
705
706
707
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
708

709
710
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
711
712
            new_val = new_val.copy()
        self._val = new_val
713
        return self
csongor's avatar
csongor committed
714

715
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
716
        """ Returns the distributed_data_object associated with this Field.
717
718
719
720

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
721
722
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
723

724
725
726
727
728
729
730
731
732
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
733

734
735
736
        if self._val is None:
            self.set_val(None)

737
        if copy:
Theo Steininger's avatar
Theo Steininger committed
738
            return self._val.copy()
739
        else:
Theo Steininger's avatar
Theo Steininger committed
740
            return self._val
csongor's avatar
csongor committed
741

Theo Steininger's avatar
Theo Steininger committed
742
743
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
744
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
745

746
747
748
749
750
751
752
753
754
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
755

756
        return self.get_val(copy=False)
csongor's avatar
csongor committed
757

Theo Steininger's avatar
Theo Steininger committed
758
759
    @val.setter
    def val(self, new_val):
760
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
761

762
763
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
764
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
765

766
767
768
769
770
771
772
773
774
775
776
        Returns
        -------
        out : tuple
            The output object. The tuple contains the dimansions of the spaces
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
777

778
        shape_tuple = tuple(sp.shape for sp in self.domain)
779
780
781
782
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
783

784
        return global_shape
csongor's avatar
csongor committed
785

786
787
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
788
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
789

Theo Steininger's avatar
Theo Steininger committed
790
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
791

792
793
794
795
796
797
798
799
800
801
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
802

803
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
804
        try:
Martin Reinecke's avatar
Martin Reinecke committed
805
            return int(reduce(lambda x, y: x * y, dim_tuple))
Theo Steininger's avatar
Theo Steininger committed
806
807
        except TypeError:
            return 0
csongor's avatar
csongor committed
808

809
810
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
811
812
813
814
815
816
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
817
818
819
820
821
822
823
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
824
825
826
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
827
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
828
        try:
Theo Steininger's avatar
Theo Steininger committed
829
            return reduce(lambda x, y: x * y, volume_tuple)
830
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
831
            return 0.
832

Theo Steininger's avatar
Theo Steininger committed
833
    # ---Special unary/binary operations---
834

csongor's avatar
csongor committed
835
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
836
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
837

838
839
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
840
        x : scalar, d2o, Field, array_like
841
842
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
843

844
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
845
846
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
847

848
849
850
851
852
853
854
855
856
857
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
858
859
        if dtype is None:
            dtype = self.dtype
860
861
        else:
            dtype = np.dtype(dtype)
862

863
864
        casted_x = x

865
        for ind, sp in enumerate(self.domain):
866
            casted_x = sp.pre_cast(casted_x,
867
868
869
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
870
871

        for ind, sp in enumerate(self.domain):
872
873
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
874

875
        return casted_x
csongor's avatar
csongor committed
876

Theo Steininger's avatar
Theo Steininger committed
877
    def _actual_cast(self, x, dtype=None):
878
        if isinstance(x, Field):
csongor's avatar
csongor committed
879
880
881
882
883
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

884
        return_x = distributed_data_object(
885
886
887
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
888
889
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
890

891
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
892
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
893

894
895
896
897
898
899
900
901
902
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
903

904
905
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
906

907
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
908
909
            The new distribution strategy the Field shall have.

910
911
912
913
914
915
916
917
918
919
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
920

Theo Steininger's avatar
Theo Steininger committed
921
        copied_val = self.get_val(copy=True)
922
923
924
925
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
926
927
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
928

929
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
930
931
932
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
933
934
935
936
937
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
938

939
940
941
942
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
943

944
945
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
946

Theo Steininger's avatar
Theo Steininger committed
947
        distribution_strategy : string, all supported distribution strategies
948
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
949

950
951
952
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
953
            The output object.
954
955
956
957
958
959

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
960

Theo Steininger's avatar
Theo Steininger committed
961
962
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
963
        else:
Theo Steininger's avatar
Theo Steininger committed
964
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
965

Theo Steininger's avatar
Theo Steininger committed
966
967
968
969
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
970

971
972
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
973

Theo Steininger's avatar
Theo Steininger committed
974
975
        fast_copyable = True
        try:
Martin Reinecke's avatar
Martin Reinecke committed
976
            for i in range(len(self.domain)):
Theo Steininger's avatar
Theo Steininger committed
977
978
979
980
981
982
983
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
984
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
985
986
987
988
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
989
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
990
        return new_field
csongor's avatar
csongor committed
991

Theo Steininger's avatar
Theo Steininger committed
992
993
994
995
996
997
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
Martin Reinecke's avatar
Martin Reinecke committed
998
        for key, value in list(self.__dict__.items()):
999
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
1000
1001
1002
1003
1004
1005
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
1006
        """ Weights the pixels of `self` with their invidual pixel-volume.
1007
1008
1009
1010

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
1011
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
1012

1013
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
1014
1015
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
1016

Theo Steininger's avatar
Theo Steininger committed
1017
1018
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
1019

1020
1021
1022
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
1023
            The weighted field.
1024
1025

        """
1026
        if inplace:
csongor's avatar
csongor committed
1027
1028
1029
1030
            new_field = self
        else:
            new_field = self.copy_empty()

1031
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
1032

1033
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
1034
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
1035
            spaces = list(range(len(self.domain)))
csongor's avatar
csongor committed
1036

1037
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
1038
1039
1040
1041
1042
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
1043
1044

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
1045
1046
        return new_field

Martin Reinecke's avatar
Martin Reinecke committed
1047
    def vdot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar