correlated_fields.py 3.73 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20

21
from ..compat import *
Philipp Arras's avatar
Philipp Arras committed
22
from ..domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
23 24
from ..multi_field import MultiField
from ..multi_domain import MultiDomain
Martin Reinecke's avatar
Martin Reinecke committed
25
from ..operators.domain_distributor import DomainDistributor
Philipp Arras's avatar
Philipp Arras committed
26 27
from ..operators.harmonic_transform_operator import HarmonicTransformOperator
from ..operators.power_distributor import PowerDistributor
Martin Reinecke's avatar
Martin Reinecke committed
28
from ..operators.operator import Operator
Martin Reinecke's avatar
Martin Reinecke committed
29

Martin Reinecke's avatar
Martin Reinecke committed
30

31
class CorrelatedField(Operator):
32
    '''
33
    Class for construction of correlated fields
34 35 36

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
37
    s_space : Field domain
38 39 40

    amplitude_model : model for correlation structure
    '''
41 42 43 44 45 46 47 48
    def __init__(self, s_space, amplitude_model):
        self._s_space = s_space
        self._amplitude_model = amplitude_model
        self._h_space = s_space.get_default_codomain()
        self._ht = HarmonicTransformOperator(self._h_space, s_space)
        self._p_space = amplitude_model.target[0]
        self._power_distributor = PowerDistributor(self._h_space,
                                                   self._p_space)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
49 50 51
        self._domain = MultiDomain.union(
            (self._amplitude_model.domain,
             MultiDomain.make({"xi": self._h_space})))
52

53 54
    @property
    def domain(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
55 56 57 58 59
        return self._domain

    @property
    def target(self):
        return self._ht.target
60

Martin Reinecke's avatar
Martin Reinecke committed
61
    def apply(self, x):
62 63 64 65
        A = self._power_distributor(self._amplitude_model(x))
        correlated_field_h = A * x["xi"]
        correlated_field = self._ht(correlated_field_h)
        return correlated_field
66 67


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
# def make_mf_correlated_field(s_space_spatial, s_space_energy,
#                              amplitude_model_spatial, amplitude_model_energy):
#     '''
#     Method for construction of correlated multi-frequency fields
#     '''
#     h_space_spatial = s_space_spatial.get_default_codomain()
#     h_space_energy = s_space_energy.get_default_codomain()
#     h_space = DomainTuple.make((h_space_spatial, h_space_energy))
#     ht1 = HarmonicTransformOperator(h_space, space=0)
#     ht2 = HarmonicTransformOperator(ht1.target, space=1)
#     ht = ht2*ht1
#
#     p_space_spatial = amplitude_model_spatial.value.domain[0]
#     p_space_energy = amplitude_model_energy.value.domain[0]
#
#     pd_spatial = PowerDistributor(h_space, p_space_spatial, 0)
#     pd_energy = PowerDistributor(pd_spatial.domain, p_space_energy, 1)
#     pd = pd_spatial*pd_energy
#
#     dom_distr_spatial = DomainDistributor(pd.domain, 0)
#     dom_distr_energy = DomainDistributor(pd.domain, 1)
#
#     a_spatial = dom_distr_spatial(amplitude_model_spatial)
#     a_energy = dom_distr_energy(amplitude_model_energy)
#     a = a_spatial*a_energy
#     A = pd(a)
#
#     position = MultiField.from_dict(
#         {'xi': Field.from_random('normal', h_space)})
#     xi = Variable(position)['xi']
#     correlated_field_h = A*xi
#     correlated_field = ht(correlated_field_h)
#     return PointwiseExponential(correlated_field)