correlated_fields.py 3.73 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20

21
from ..compat import *
Philipp Arras's avatar
Philipp Arras committed
22
from ..domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
23
24
from ..multi_field import MultiField
from ..multi_domain import MultiDomain
Martin Reinecke's avatar
Martin Reinecke committed
25
from ..operators.domain_distributor import DomainDistributor
Philipp Arras's avatar
Philipp Arras committed
26
27
from ..operators.harmonic_transform_operator import HarmonicTransformOperator
from ..operators.power_distributor import PowerDistributor
Martin Reinecke's avatar
Martin Reinecke committed
28
from ..operators.operator import Operator
Martin Reinecke's avatar
Martin Reinecke committed
29

Martin Reinecke's avatar
Martin Reinecke committed
30

31
class CorrelatedField(Operator):
32
    '''
33
    Class for construction of correlated fields
34
35
36

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
37
    s_space : Field domain
38
39
40

    amplitude_model : model for correlation structure
    '''
41
42
43
44
45
46
47
48
    def __init__(self, s_space, amplitude_model):
        self._s_space = s_space
        self._amplitude_model = amplitude_model
        self._h_space = s_space.get_default_codomain()
        self._ht = HarmonicTransformOperator(self._h_space, s_space)
        self._p_space = amplitude_model.target[0]
        self._power_distributor = PowerDistributor(self._h_space,
                                                   self._p_space)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
49
50
51
        self._domain = MultiDomain.union(
            (self._amplitude_model.domain,
             MultiDomain.make({"xi": self._h_space})))
52

53
54
    @property
    def domain(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
55
56
57
58
59
        return self._domain

    @property
    def target(self):
        return self._ht.target
60

Martin Reinecke's avatar
Martin Reinecke committed
61
    def apply(self, x):
62
63
64
65
        A = self._power_distributor(self._amplitude_model(x))
        correlated_field_h = A * x["xi"]
        correlated_field = self._ht(correlated_field_h)
        return correlated_field
66
67


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# def make_mf_correlated_field(s_space_spatial, s_space_energy,
#                              amplitude_model_spatial, amplitude_model_energy):
#     '''
#     Method for construction of correlated multi-frequency fields
#     '''
#     h_space_spatial = s_space_spatial.get_default_codomain()
#     h_space_energy = s_space_energy.get_default_codomain()
#     h_space = DomainTuple.make((h_space_spatial, h_space_energy))
#     ht1 = HarmonicTransformOperator(h_space, space=0)
#     ht2 = HarmonicTransformOperator(ht1.target, space=1)
#     ht = ht2*ht1
#
#     p_space_spatial = amplitude_model_spatial.value.domain[0]
#     p_space_energy = amplitude_model_energy.value.domain[0]
#
#     pd_spatial = PowerDistributor(h_space, p_space_spatial, 0)
#     pd_energy = PowerDistributor(pd_spatial.domain, p_space_energy, 1)
#     pd = pd_spatial*pd_energy
#
#     dom_distr_spatial = DomainDistributor(pd.domain, 0)
#     dom_distr_energy = DomainDistributor(pd.domain, 1)
#
#     a_spatial = dom_distr_spatial(amplitude_model_spatial)
#     a_energy = dom_distr_energy(amplitude_model_energy)
#     a = a_spatial*a_energy
#     A = pd(a)
#
#     position = MultiField.from_dict(
#         {'xi': Field.from_random('normal', h_space)})
#     xi = Variable(position)['xi']
#     correlated_field_h = A*xi
#     correlated_field = ht(correlated_field_h)
#     return PointwiseExponential(correlated_field)