sugar.py 3.73 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18
19
20
21

from nifty import PowerSpace,\
                  Field,\
                  DiagonalOperator,\
22
                  sqrt
23
from nifty.minimization.conjugate_gradient import ConjugateGradient
24
25
26
__all__ = ['create_power_operator']


Jakob Knollmueller's avatar
Jakob Knollmueller committed
27
def create_power_operator(domain, power_spectrum, dtype=None,
28
                          distribution_strategy='not'):
Theo Steininger's avatar
Theo Steininger committed
29
    """ Creates a diagonal operator with the given power spectrum.
30

31
    Constructs a diagonal operator that lives over the specified domain.
32

33
34
35
    Parameters
    ----------
    domain : DomainObject
36
        Domain over which the power operator shall live.
Theo Steininger's avatar
Theo Steininger committed
37
    power_spectrum : (array-like, method)
38
39
        An array-like object, or a method that implements the square root
        of a power spectrum as a function of k.
Theo Steininger's avatar
Theo Steininger committed
40
    dtype : type *optional*
41
        dtype that the field holding the power spectrum shall use
Theo Steininger's avatar
Theo Steininger committed
42
43
44
        (default : None).
        if dtype == None: the dtype of `power_spectrum` will be used.
    distribution_strategy : string *optional*
45
        Distributed strategy to be used by the underlying d2o objects.
Theo Steininger's avatar
Theo Steininger committed
46
47
        (default : 'not')

48
49
    Returns
    -------
Theo Steininger's avatar
Theo Steininger committed
50
    DiagonalOperator : An operator that implements the given power spectrum.
51

52
    """
53

Jakob Knollmueller's avatar
Jakob Knollmueller committed
54
55
    if isinstance(power_spectrum, Field):
        power_domain = power_spectrum.domain
56
    else:
Jakob Knollmueller's avatar
Jakob Knollmueller committed
57
        power_domain = PowerSpace(domain,
58
                                  distribution_strategy=distribution_strategy)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
59

60
    fp = Field(power_domain, val=power_spectrum, dtype=dtype,
61
               distribution_strategy=distribution_strategy)
62
    f = fp.power_synthesize(mean=1, std=0, real_signal=False)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
63
    f **= 2
64
    return DiagonalOperator(domain, diagonal=f, bare=True)
65

66

67
68
69
def generate_posterior_sample(mean, covariance):
    """ Generates a posterior sample from a Gaussian distribution with given
    mean and covariance
70

71
72
73
    This method generates samples by setting up the observation and
    reconstruction of a mock signal in order to obtain residuals of the right
    correlation which are added to the given mean.
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    Parameters
    ----------
    mean : Field
        the mean of the posterior Gaussian distribution
    covariance : WienerFilterCurvature
        The posterior correlation structure consisting of a
        response operator, noise covariance and prior signal covariance

    Returns
    -------
    sample : Field
        Returns the a sample from the Gaussian of given mean and covariance.

    """

90
91
92
    S = covariance.S
    R = covariance.R
    N = covariance.N
93

Jakob Knollmueller's avatar
Jakob Knollmueller committed
94
    power = S.diagonal().power_analyze()**.5
95
96
    mock_signal = power.power_synthesize(real_signal=True)

Jakob Knollmueller's avatar
Jakob Knollmueller committed
97
    noise = N.diagonal(bare=True).val
98

99
    mock_noise = Field.from_random(random_type="normal", domain=N.domain,
100
                                   std=sqrt(noise), dtype=noise.dtype)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
101
    mock_data = R(mock_signal) + mock_noise
102

Jakob Knollmueller's avatar
Jakob Knollmueller committed
103
    mock_j = R.adjoint_times(N.inverse_times(mock_data))
104
105
106
    mock_m = covariance.inverse_times(mock_j)
    sample = mock_signal - mock_m + mean
    return sample