space.py 5.3 KB
Newer Older
1 2 3 4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6 7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8 9 10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13 14 15 16 17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18

19 20
import abc

21
from nifty.domain_object import DomainObject
Theo Steininger's avatar
Theo Steininger committed
22

23

24
class Space(DomainObject):
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    """ The abstract base class for all NIFTy spaces.

    An instance of a space contains information about the manifolds
    geometry and enhances the functionality of DomainObject by methods that
    are needed for powerspectrum analysis and smoothing.

    Parameters
    ----------
    None

    Attributes
    ----------
    dim : np.int
        Total number of dimensionality, i.e. the number of pixels.
    harmonic : bool
        Specifies whether the space is a signal or harmonic space.
    total_volume : np.float
        The total volume of the space.
    shape : tuple of np.ints
        The shape of the space's data array.

    Raises
    ------
    TypeError
        Raised if instantiated directly.

    Notes
    -----
    `Space` is an abstract base class. In order to allow for instantiation
    the methods `get_distance_array`, `total_volume` and `copy` must be
    implemented as well as the abstract methods inherited from
    `DomainObject`.

    """
59

60
    def __init__(self):
Theo Steininger's avatar
Theo Steininger committed
61

Martin Reinecke's avatar
Martin Reinecke committed
62
        super(Space, self).__init__()
63

64 65
    @abc.abstractproperty
    def harmonic(self):
Theo Steininger's avatar
Theo Steininger committed
66
        """ Returns True if this space is a harmonic space.
67
        """
Theo Steininger's avatar
Theo Steininger committed
68

69
        raise NotImplementedError
70

71
    @abc.abstractproperty
72
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
73 74
        """ Returns the total volume of the space.

75 76
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
77 78 79
        float
            A real number representing the sum of all pixel volumes.

80
        """
81

82 83
        raise NotImplementedError(
            "There is no generic volume for the Space base class.")
84

85 86
    @abc.abstractmethod
    def copy(self):
Theo Steininger's avatar
Theo Steininger committed
87 88
        """ Returns a copy of this Space instance.

89 90
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
91 92 93
        Space
            A copy of this instance.

94
        """
Theo Steininger's avatar
Theo Steininger committed
95

Martin Reinecke's avatar
Martin Reinecke committed
96
        return self.__class__()
97

98
    def get_distance_array(self, distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
99 100 101 102 103 104 105 106 107 108 109
        """ The distances of the pixel to zero.

        This returns an array that gives for each pixel its distance to the
        center of the manifolds grid.

        Parameters
        ----------
        distribution_strategy : str
            The distribution_strategy which shall be used the returned
            distributed_data_object.

110 111
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
112 113 114
        distributed_data_object
            A d2o containing the distances

115
        """
Theo Steininger's avatar
Theo Steininger committed
116

117
        raise NotImplementedError(
118 119
            "There is no generic distance structure for Space base class.")

Martin Reinecke's avatar
Martin Reinecke committed
120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def get_unique_distances(self):
        raise NotImplementedError

    def get_natural_binbounds(self):
        """ The boundaries for natural power spectrum binning.

        Returns
        -------
        distributed_data_object
            A numpy array containing the binbounds

        """
        raise NotImplementedError

134
    def get_fft_smoothing_kernel_function(self, sigma):
Theo Steininger's avatar
Theo Steininger committed
135 136 137 138 139 140 141 142
        """ This method returns a smoothing kernel function.

        This method, which is only implemented for harmonic spaces, helps
        smoothing fields that live in a position space that has this space as
        its harmonic space. The returned function multiplies field values of a
        field with a zero centered Gaussian which corresponds to a convolution
        with a Gaussian kernel and sigma standard deviation in position space.

143 144
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
145 146 147 148 149 150 151 152
        sigma : float
            A real number representing a physical scale on which the smoothing
            takes place. The smoothing is defined with respect to the real
            physical field and points that are closer together than one sigma
            are blurred together. Mathematically sigma is the standard
            deviation of a convolution with a normalized, zero-centered
            Gaussian that takes place in position space.

153 154
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
155 156 157 158
        function (array-like -> array-like)
            A smoothing operation that multiplies values with a Gaussian
            kernel.

159
        """
Theo Steininger's avatar
Theo Steininger committed
160

161 162
        raise NotImplementedError(
            "There is no generic co-smoothing kernel for Space base class.")
163

164 165 166 167 168
    def hermitianize_inverter(self, x, axes):
        """ Inverts/flips x in the context of Hermitian decomposition.

        This method is mainly used for power-synthesizing and -analyzing
        Fields.
Theo Steininger's avatar
Theo Steininger committed
169

170 171
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
172 173 174
        axes : tuple of ints
            Specifies the axes of x which correspond to this space.

175 176
        Returns
        -------
177 178
        distributed_data_object
            The Hermitian-flipped of x.
179
        """
Theo Steininger's avatar
Theo Steininger committed
180

181
        return x