correlated_fields.py 14.3 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20
from functools import reduce
Philipp Arras's avatar
Philipp Arras committed
21
from numpy.testing import assert_allclose
22

Philipp Arras's avatar
Philipp Arras committed
23
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
24
25
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
Philipp Arras's avatar
Philipp Arras committed
26
from ..extra import check_jacobian_consistency, consistency_check
27
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
28
from ..multi_domain import MultiDomain
Philipp Arras's avatar
Philipp Arras committed
29
from ..operators.adder import Adder
30
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
31
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
32
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
33
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
34
from ..operators.linear_operator import LinearOperator
35
from ..operators.diagonal_operator import DiagonalOperator
Philipp Arras's avatar
Philipp Arras committed
36
37
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
38
from ..operators.value_inserter import ValueInserter
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from ..sugar import from_global_data, from_random, full, makeDomain, get_default_codomain

def _reshaper(domain, x, space):
    shape = reduce(lambda x,y: x+y,
            (domain[i].shape for i in range(len(domain)) if i != space),())
    x = np.array(x)
    if x.shape == shape:
        return np.asfarray(x)
    elif x.shape in [(), (1,)]:
        return np.full(shape, x, dtype=np.float)
    else:
        raise TypeError("Shape of parameters cannot be interpreted")

def _lognormal_moment_matching(mean, sig, key,
        domain = DomainTuple.scalar_domain(), space = 0):
    domain = makeDomain(domain)
    mean, sig = (_reshaper(domain, param, space) for param in (mean, sig))
    key = str(key)
    assert np.all(mean > 0)
    assert np.all(sig > 0)
Philipp Arras's avatar
Philipp Arras committed
59
60
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
61
    return _normal(logmean, logsig, key, domain).exp()
Philipp Arras's avatar
Philipp Arras committed
62
63


64
65
66
67
68
69
70
def _normal(mean, sig, key,
        domain = DomainTuple.scalar_domain(), space = 0):
    domain = makeDomain(domain)
    mean, sig = (_reshaper(domain, param, space) for param in (mean, sig))
    assert np.all(sig > 0)
    return Adder(from_global_data(domain, mean)) @ (
        sig*ducktape(domain, None, key))
Philipp Arras's avatar
Philipp Arras committed
71
72


Philipp Frank's avatar
Philipp Frank committed
73
class _SlopeRemover(EndomorphicOperator):
74
    def __init__(self, domain, cooridinates, space = 0):
Philipp Frank's avatar
Philipp Frank committed
75
        self._domain = makeDomain(domain)
76
        self._sc = cooridinates / float(cooridinates[-1])
Philipp Arras's avatar
Philipp Arras committed
77

78
79
        self._space = space
        self._last = (slice(None),)*self._domain.axes[space][0] + (-1,)
Philipp Frank's avatar
Philipp Frank committed
80
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
81

Philipp Frank's avatar
Philipp Frank committed
82
83
84
85
    def apply(self,x,mode):
        self._check_input(x,mode)
        x = x.to_global_data()
        if mode == self.TIMES:
86
            res = x - x[self._last] * self._sc
Philipp Frank's avatar
Philipp Frank committed
87
        else:
88
            #NOTE Why not x.copy()?
Philipp Frank's avatar
Philipp Frank committed
89
            res = np.zeros(x.shape,dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
90
            res += x
91
            res[self._last] -= (x*self._sc).sum(axis = self._space)
Philipp Frank's avatar
Philipp Frank committed
92
93
        return from_global_data(self._tgt(mode),res)

94
def _make_slope_Operator(smooth,loglogavgslope, space = 0):
Philipp Frank's avatar
Philipp Frank committed
95
    tg = smooth.target
96
    logkl = _log_k_lengths(tg[space])
Philipp Frank's avatar
Philipp Frank committed
97
98
    logkl -= logkl[0]
    logkl = np.insert(logkl, 0, 0)
99
    noslope = _SlopeRemover(tg,logkl, space) @ smooth
Philipp Frank's avatar
Philipp Frank committed
100
101
102
    # FIXME Move to tests
    consistency_check(_SlopeRemover(tg,logkl))

103
104
105
    expander = ContractionOperator(tg, spaces = space).adjoint
    _t = DiagonalOperator(from_global_data(tg, logkl), tg, spaces = space)
    return _t @ expander @ loglogavgslope + noslope
Philipp Arras's avatar
Philipp Arras committed
106
107
108
109
110

def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])

class _TwoLogIntegrations(LinearOperator):
111
    def __init__(self, target, space = None):
Philipp Arras's avatar
Philipp Arras committed
112
        self._target = makeDomain(target)
113
114
115
116
117
        assert isinstance(self.target[space], PowerSpace)
        dom = list(self._target)
        dom[space] = UnstructuredDomain((2, self.target[space].shape[0]-2))
        self._domain = makeDomain(dom)
        self._space = space
Philipp Arras's avatar
Philipp Arras committed
118
        self._capability = self.TIMES | self.ADJOINT_TIMES
119
        logk_lengths = _log_k_lengths(self._target[space])
Philipp Arras's avatar
Philipp Arras committed
120
121
122
123
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
124
125
126
127
128
129
130
131
132

        #Maybe make class properties
        axis = self._target.axes[self._space][0]
        sl = (slice(None),)*axis
        first = sl + (0,)
        second = sl + (1,)
        from_third = sl + (slice(2,None),)
        no_border = sl + (slice(1,-1),)
        reverse = sl + (slice(None,None,-1),)
Philipp Arras's avatar
Philipp Arras committed
133
134
135
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
136
137
138
139
140
            res[first] = 0
            res[second] = 0
            res[from_third] = np.cumsum(x[second], axis = axis)
            res[from_third] = (res[from_third] + res[no_border])/2*self._logvol + x[first]
            res[from_third] = np.cumsum(res[from_third], axis = axis)
Philipp Arras's avatar
Philipp Arras committed
141
142
143
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
144
145
146
147
148
149
            x[from_third] = np.cumsum(x[from_third][reverse], axis = axis)[reverse]
            res[first] += x[from_third]
            x[from_third] *= self._logvol/2.
            x[no_border] += x[from_third]
            res[second] += np.cumsum(x[from_third][reverse], axis = axis)[reverse]
        return from_global_data(self._tgt(mode), res)
Philipp Arras's avatar
Philipp Arras committed
150
151
152


class _Normalization(Operator):
153
    def __init__(self, domain, space = 0):
Philipp Arras's avatar
Philipp Arras committed
154
        self._domain = self._target = makeDomain(domain)
155
156
157
158
        hspace = list(self._domain)
        hspace[space] = hspace[space].harmonic_partner
        hspace = makeDomain(hspace)
        pd = PowerDistributor(hspace, power_space=self._domain[space], space = space)
Philipp Arras's avatar
Philipp Arras committed
159
        # TODO Does not work on sphere yet
160
161
162
163
        mode_multiplicity = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        mode_multiplicity[0] = 0
        self._mode_multiplicity = from_global_data(self._domain, mode_multiplicity)
        self._specsum = _SpecialSum(self._domain, space)
Philipp Arras's avatar
Philipp Arras committed
164
165
        # FIXME Move to tests
        consistency_check(self._specsum)
Philipp Arras's avatar
Philipp Arras committed
166
167
168
169
170
171
172

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
173
        return self._specsum(self._mode_multiplicity*spec)**(-0.5)*amp
Philipp Arras's avatar
Philipp Arras committed
174
175
176


class _SpecialSum(EndomorphicOperator):
177
    def __init__(self, domain, space = 0):
Philipp Arras's avatar
Philipp Arras committed
178
179
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES
180
181
        self._contractor = ContractionOperator(domain, space)
        self._zero_mode = (slice(None),)*domain.axes[space][0] + (0,)
Philipp Arras's avatar
Philipp Arras committed
182
183
184

    def apply(self, x, mode):
        self._check_input(x, mode)
185
        return self._contractor.adjoint(self._contractor(x))
Philipp Arras's avatar
Philipp Arras committed
186
187


188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
class _slice_extractor(LinearOperator):
    #FIXME it should be tested if the the domain and target are consistent with the slice
    def __init__(self, domain, target, sl):
        self._domain = makeDomain(domain)
        self._target = makeDomain(target)
        self._sl = sl
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        x = x.to_global_data()
        if mode == self.TIMES:
            res = x[self._sl]
            res = res.reshape(self._target.shape)
        else:
            res = np.zeros(self._domain.shape)
            res[self._sl] = x
        return from_global_data(self._tgt(mode), res)
    

Philipp Arras's avatar
Philipp Arras committed
208
209
210
class CorrelatedFieldMaker:
    def __init__(self):
        self._amplitudes = []
211
        self._spaces = []
Philipp Arras's avatar
Philipp Arras committed
212
213

    def add_fluctuations_from_ops(self, target, fluctuations, flexibility,
214
                                  asperity, loglogavgslope, key, space = 0):
Philipp Arras's avatar
Philipp Arras committed
215
216
217
218
219
220
221
222
223
224
225
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
226
        assert isinstance(target[space], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
227

228
        twolog = _TwoLogIntegrations(target, space)
229
230
231
232
233
234
235
236
237
238
239
240
        dt = twolog._logvol
        sl = (slice(None),)*target.axes[space][0]
        first = sl + (0,)
        second = sl + (1,)
        expander = ContractionOperator(twolog.domain, spaces = space).adjoint
        
        sqrt_t = np.zeros(twolog.domain.shape)
        sqrt_t[first] = sqrt_t[second] = np.sqrt(dt)
        sqrt_t = from_global_data(twolog.domain, sqrt_t)
        sqrt_t = DiagonalOperator(sqrt_t, twolog.domain, spaces = space)
        sigmasq = sqrt_t @ expander @ flexibility

Philipp Arras's avatar
Philipp Arras committed
241
        dist = np.zeros(twolog.domain.shape)
242
        dist[first] += 1.
Philipp Arras's avatar
Philipp Arras committed
243
        dist = from_global_data(twolog.domain, dist)
244
        dist = DiagonalOperator(dist, twolog.domain, spaces = space)
Philipp Arras's avatar
Philipp Arras committed
245

246
247
248
249
        shift = np.ones(twolog.domain.shape)
        shift[first] = dt**2/12.
        shift = from_global_data(twolog.domain, shift)
        scale = sigmasq*(Adder(shift) @ dist @ expander @ asperity).sqrt()
Philipp Arras's avatar
Philipp Arras committed
250
251

        smooth = twolog @ (scale*ducktape(scale.target, None, key))
Philipp Frank's avatar
Philipp Frank committed
252
253
        smoothslope = _make_slope_Operator(smooth,loglogavgslope)
        
Philipp Arras's avatar
Philipp Arras committed
254
255
256
        # move to tests
        assert_allclose(
            smooth(from_random('normal', smooth.domain)).val[0:2], 0)
Philipp Arras's avatar
Philipp Arras committed
257
        consistency_check(twolog)
Philipp Arras's avatar
Philipp Arras committed
258
259
        check_jacobian_consistency(smooth, from_random('normal',
                                                       smooth.domain))
Philipp Arras's avatar
Philipp Arras committed
260
261
        check_jacobian_consistency(smoothslope,
                                   from_random('normal', smoothslope.domain))
Philipp Arras's avatar
Philipp Arras committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        # end move to tests

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
        ampl = adder @ ((expander @ fluctuations)*normal_ampl)

        # Move to tests
        # FIXME This test fails but it is not relevant for the final result
        # assert_allclose(
        #     normal_ampl(from_random('normal', normal_ampl.domain)).val[0], 1)
        assert_allclose(ampl(from_random('normal', ampl.domain)).val[0], vol)
Philipp Arras's avatar
Philipp Arras committed
279
280
        op = _Normalization(target)
        check_jacobian_consistency(op, from_random('normal', op.domain))
Philipp Arras's avatar
Philipp Arras committed
281
282
283
        # End move to tests

        self._amplitudes.append(ampl)
284
        self._spaces.append(space)
Philipp Arras's avatar
Philipp Arras committed
285
286
287
288

    def add_fluctuations(self, target, fluctuations_mean, fluctuations_stddev,
                         flexibility_mean, flexibility_stddev, asperity_mean,
                         asperity_stddev, loglogavgslope_mean,
289
                         loglogavgslope_stddev, prefix, space = 0):
Philipp Arras's avatar
Philipp Arras committed
290
291
        prefix = str(prefix)

292
        fluct = _lognormal_moment_matching(fluctuations_mean, fluctuations_stddev,
293
                                           prefix + 'fluctuations', space = space)
Philipp Arras's avatar
Philipp Arras committed
294
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
295
                                          prefix + 'flexibility', space = space)
Philipp Arras's avatar
Philipp Arras committed
296
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
297
                                         prefix + 'asperity', space = space)
298
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
299
                        prefix + 'loglogavgslope', space = space)
Philipp Arras's avatar
Philipp Arras committed
300
        self.add_fluctuations_from_ops(target, fluct, flex, asp, avgsl,
301
                                       prefix + 'spectrum', space)
Philipp Arras's avatar
Philipp Arras committed
302
303
304
305
306
307
308
309
310
311
312
313

    def finalize_from_op(self, zeromode):
        raise NotImplementedError

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
                 prefix,
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
314
        prefix = str(prefix)
Philipp Arras's avatar
Philipp Arras committed
315
316
        if offset is not None:
            offset = float(offset)
317
318
319
320
321
322
323
324
325
326

        hspace = []
        zeroind = ()
        for amp, space in zip(self._amplitudes, self._spaces):
            dd =  list(amp.target)
            dd[space] = dd[space].harmonic_partner
            hspace.extend(dd)
            zeroind += (slice(None),)*space + (0,)*len(dd[space].shape)
        hspace = makeDomain(hspace)
        spaces = np.cumsum(self._spaces) + np.arange(len(self._spaces))
Philipp Arras's avatar
Philipp Arras committed
327
328
329

        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
330
331
                                         prefix + 'zeromode', space = space)

Philipp Arras's avatar
Philipp Arras committed
332
333
334
        foo = np.ones(hspace.shape)
        foo[zeroind] = 0

335
336
337
338
339
340
341
342
        ZeroModeInserter = _slice_extractor(hspace, azm.target, zeroind).adjoint

        azm = Adder(from_global_data(hspace, foo)) @ ZeroModeInserter @ azm

        #NOTE ht and pd operator able to act on several spaces might be nice
        ht = HarmonicTransformOperator(hspace, space = spaces[0])
        pd = PowerDistributor(hspace, 
                self._amplitudes[0].target[spaces[0]], spaces[0])
Philipp Arras's avatar
Philipp Arras committed
343
        for i in range(1, len(self._amplitudes)):
344
345
346
            ht = HarmonicTransformOperator(ht.target, space = spaces[i]) @ ht
            pd = pd @ PowerDistributor( pd.domain, 
                    self._amplitudes[i].target[spaces[i]], space = spaces[i])
Philipp Arras's avatar
Philipp Arras committed
347
348
349
350
351
352
353
354
355
356
357
358
359

        a = ContractionOperator(pd.domain,
                                spaces[1:]).adjoint(self._amplitudes[0])
        for i in range(1, len(self._amplitudes)):
            a = a*(ContractionOperator(pd.domain, spaces[:i] + spaces[
                (i + 1):]).adjoint(self._amplitudes[i]))

        A = pd @ a
        return ht(azm*A*ducktape(hspace, None, prefix + 'xi'))

    @property
    def amplitudes(self):
        return self._amplitudes