test_power.py 7.23 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

import unittest
import nifty4 as ift
import numpy as np
from itertools import product
from test.common import expand
from numpy.testing import assert_allclose


Martin Reinecke's avatar
Martin Reinecke committed
27
28
29
30
def _flat_PS(k):
    return np.ones_like(k)


31
class Energy_Tests(unittest.TestCase):
Philipp Arras's avatar
Philipp Arras committed
32
    @expand(product([ift.RGSpace(64, distances=.789),
33
34
35
36
                     ift.RGSpace([32, 32], distances=.789)],
                    [132, 42, 3]))
    def testLinearPower(self, space, seed):
        np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
37
38
39
40
41
42
43
44
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

45
46
47
48
49
50
        def pspec(k): return 64 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        tau0 = ift.log(pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal', std=.01)
        N = ift.DiagonalOperator(n**2)
Philipp Arras's avatar
Philipp Arras committed
51
        s = xi * A
Martin Reinecke's avatar
Martin Reinecke committed
52
        Instrument = ift.ScalingOperator(1., space)
Philipp Arras's avatar
Philipp Arras committed
53
54
55
56
57
        R = Instrument * ht
        d = R(s) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
58
        eps = 1e-7
Philipp Arras's avatar
Philipp Arras committed
59
60
61
62
63
64
65
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

Philipp Arras's avatar
Philipp Arras committed
66
67
        S = ift.create_power_operator(
            hspace, power_spectrum=lambda k: 1. / (1 + k**2))
Philipp Arras's avatar
Philipp Arras committed
68
69
70
71
72

        D = ift.library.WienerFilterEnergy(position=s, d=d, R=R, N=N, S=S,
                                           inverter=inverter).curvature

        energy0 = ift.library.CriticalPowerEnergy(
Philipp Arras's avatar
Philipp Arras committed
73
            position=tau0, m=s, inverter=inverter, D=D, samples=10, smoothness_prior=1.)
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
74
        energy1 = energy0.at(tau1)
Philipp Arras's avatar
Philipp Arras committed
75
76
77

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
78
        tol = 1e-4
Philipp Arras's avatar
Philipp Arras committed
79
80
81
82
        assert_allclose(a, b, rtol=tol, atol=tol)

    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
83
84
85
86
                    [ift.library.Exponential, ift.library.Linear],
                    [132, 42, 3]))
    def testNonlinearPower(self, space, nonlinearity, seed):
        np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
87
88
        f = nonlinearity()
        dim = len(space.shape)
89
90
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
Philipp Arras's avatar
Philipp Arras committed
91
92
93
94
95
96
97
98
99
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 1 / (1 + k**2)**dim
        tau0 = ift.PS_field(pspace, pspec)
        A = P.adjoint_times(ift.sqrt(tau0))
        n = ift.Field.from_random(domain=space, random_type='normal')
100
        s = ht(xi * A)
Martin Reinecke's avatar
Martin Reinecke committed
101
        R = ift.ScalingOperator(10., space)
Philipp Arras's avatar
Philipp Arras committed
102
103
104
105
106
107
        diag = ift.Field.ones(space)
        N = ift.DiagonalOperator(diag)
        d = R(f(s)) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
108
        eps = 1e-7
Philipp Arras's avatar
Philipp Arras committed
109
110
111
112
113
114
115
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

Martin Reinecke's avatar
Martin Reinecke committed
116
        S = ift.create_power_operator(hspace, power_spectrum=_flat_PS)
Philipp Arras's avatar
Philipp Arras committed
117
118
119
120
121
122
123
124
        D = ift.library.NonlinearWienerFilterEnergy(
            position=xi,
            d=d,
            Instrument=R,
            nonlinearity=f,
            power=A,
            N=N,
            S=S,
125
            ht=ht,
Philipp Arras's avatar
Philipp Arras committed
126
127
128
129
130
            inverter=inverter).curvature

        energy0 = ift.library.NonlinearPowerEnergy(
            position=tau0,
            d=d,
Philipp Arras's avatar
Philipp Arras committed
131
            xi=xi,
Philipp Arras's avatar
Philipp Arras committed
132
133
134
135
            D=D,
            Instrument=R,
            Projection=P,
            nonlinearity=f,
136
            ht=ht,
Philipp Arras's avatar
Philipp Arras committed
137
            N=N,
138
            samples=10)
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
139
        energy1 = energy0.at(tau1)
Philipp Arras's avatar
Philipp Arras committed
140
141
142

        a = (energy1.value - energy0.value) / eps
        b = energy0.gradient.vdot(direction)
143
        tol = 1e-4
Philipp Arras's avatar
Philipp Arras committed
144
        assert_allclose(a, b, rtol=tol, atol=tol)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182


class Curvature_Tests(unittest.TestCase):
    @expand(product([ift.RGSpace(64, distances=.789),
                     ift.RGSpace([32, 32], distances=.789)],
                    [132, 42, 3]))
    def testLinearPowerCurvature(self, space, seed):
        np.random.seed(seed)
        dim = len(space.shape)
        hspace = space.get_default_codomain()
        ht = ift.HarmonicTransformOperator(hspace, space)
        binbounds = ift.PowerSpace.useful_binbounds(hspace, logarithmic=True)
        pspace = ift.PowerSpace(hspace, binbounds=binbounds)
        P = ift.PowerProjectionOperator(domain=hspace, power_space=pspace)
        xi = ift.Field.from_random(domain=hspace, random_type='normal')

        def pspec(k): return 64 / (1 + k**2)**dim
        pspec = ift.PS_field(pspace, pspec)
        tau0 = ift.log(pspec)
        A = P.adjoint_times(ift.sqrt(pspec))
        n = ift.Field.from_random(domain=space, random_type='normal', std=.01)
        N = ift.DiagonalOperator(n**2)
        s = xi * A
        diag = ift.Field.ones(space)
        Instrument = ift.DiagonalOperator(diag)
        R = Instrument * ht
        d = R(s) + n

        direction = ift.Field.from_random('normal', pspace)
        direction /= np.sqrt(direction.var())
        eps = 1e-7
        tau1 = tau0 + eps * direction

        IC = ift.GradientNormController(
            iteration_limit=100,
            tol_abs_gradnorm=1e-5)
        inverter = ift.ConjugateGradient(IC)

Martin Reinecke's avatar
Martin Reinecke committed
183
        S = ift.create_power_operator(hspace, power_spectrum=_flat_PS)
184
185
186
187
188

        D = ift.library.WienerFilterEnergy(position=s, d=d, R=R, N=N, S=S,
                                           inverter=inverter).curvature

        energy0 = ift.library.CriticalPowerEnergy(
189
            position=tau0, m=s, inverter=inverter, samples=10)
190
191
192
193
194
195
196

        gradient0 = energy0.gradient
        gradient1 = energy0.at(tau1).gradient

        a = (gradient1 - gradient0) / eps
        b = energy0.curvature(direction)
        tol = 1e-5
Martin Reinecke's avatar
Martin Reinecke committed
197
198
        assert_allclose(ift.dobj.to_global_data(a.val),
                        ift.dobj.to_global_data(b.val), rtol=tol, atol=tol)