nifty_mpi_data.py 48 KB
Newer Older
ultimanet's avatar
ultimanet committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2015 Max-Planck-Society
##
## Author: Theo Steininger
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.


ultimanet's avatar
ultimanet committed
24
25
26
27
28
29
30
31

##initialize the 'found-packages'-dictionary 
found = {}

import numpy as np
import nifty_core

try:
32
    from mpi4py import MPI
ultimanet's avatar
ultimanet committed
33
34
    found[MPI] = True
except(ImportError): 
35
    import mpi_dummy as MPI
ultimanet's avatar
ultimanet committed
36
37
38
39
40
41
42
43
44
    found[MPI] = False

try:
    import pyfftw
    found['pyfftw'] = True
except(ImportError):       
    found['pyfftw'] = False

try:
45
    import h5py
ultimanet's avatar
ultimanet committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    found['h5py'] = True
    found['h5py_parallel'] = h5py.get_config().mpi
except(ImportError):
    found['h5py'] = False
    found['h5py_parallel'] = False

   


class distributed_data_object(object):
    """

        NIFTY class for distributed data

        Parameters
        ----------
        global_data : {tuple, list, numpy.ndarray} *at least 1-dimensional*
            Initial data which will be casted to a numpy.ndarray and then 
            stored according to the distribution strategy. The global_data's
            shape overwrites global_shape.
        global_shape : tuple of ints, *optional*
            If no global_data is supplied, global_shape can be used to
            initialize an empty distributed_data_object
        dtype : type, *optional*
            If an explicit dtype is supplied, the given global_data will be 
            casted to it.            
        distribution_strategy : {'fftw' (default), 'not'}, *optional*
            Specifies the way, how global_data will be distributed to the 
            individual nodes. 
            'fftw' follows the distribution strategy of pyfftw.
            'not' does not distribute the data at all. 
            

        Attributes
        ----------
        data : numpy.ndarray
            The numpy.ndarray in which the individual node's data is stored.
        dtype : type
            Data type of the data object.
        distribution_strategy : string
            Name of the used distribution_strategy
        distributor : distributor
            The distributor object which takes care of all distribution and 
            consolidation of the data. 
        shape : tuple of int
            The global shape of the data
            
        Raises
        ------
        TypeError : 
            If the supplied distribution strategy is not known. 
        
    """
    def __init__(self,  global_data=None, global_shape=None, dtype=None, distribution_strategy='fftw', *args, **kwargs):
        if global_data != None:
101
102
103
104
105
            if np.array(global_data).shape == ():
                global_data_input = None
                dtype = np.array(global_data).dtype.type
            else:
                global_data_input = np.array(global_data, copy=True, order='C')
ultimanet's avatar
ultimanet committed
106
107
        else:
            global_data_input = None
108

109
110
        self.distributor = self._get_distributor(distribution_strategy)(global_data=global_data_input, global_shape=global_shape, dtype=dtype, **kwargs)
        self.set_full_data(data=global_data_input, **kwargs)
ultimanet's avatar
ultimanet committed
111
        
112
            
ultimanet's avatar
ultimanet committed
113
114
115
        self.distribution_strategy = distribution_strategy
        self.dtype = self.distributor.dtype
        self.shape = self.distributor.global_shape
116
        self.hermitian = False        
ultimanet's avatar
ultimanet committed
117
        
118
119
        self.init_args = args 
        self.init_kwargs = kwargs
120
121
122
123
124
        
        ## If the input data was a scalar, set the whole array to this value
        if global_data != None and np.array(global_data).shape == ():
            self.set_local_data(self.get_local_data() + np.array(global_data))    
            self.hermitian = True
125
126
127
        
    def copy(self):
        temp_d2o = self.copy_empty()        
128
        temp_d2o.set_local_data(self.get_local_data(), copy=True)
129
        temp_d2o.hermitian = self.hermitian
130
131
        return temp_d2o
    
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    def copy_empty(self, global_shape=None, dtype=None, 
                   distribution_strategy=None, **kwargs):
        if global_shape == None:
            global_shape = self.shape
        if dtype == None:
            dtype = self.dtype
        if distribution_strategy == None:
            distribution_strategy = self.distribution_strategy

        kwargs.update(self.init_kwargs)
        
        temp_d2o = distributed_data_object(global_shape=global_shape,
                                           dtype=dtype,
                                           distribution_strategy=distribution_strategy,
146
                                           *self.init_args,
147
                                           **kwargs)
148
149
150
151
152
        return temp_d2o
    
    def apply_function(self, function):
        self.data[:] = np.vectorize(function)(self.data)
        
ultimanet's avatar
ultimanet committed
153
154
155
156
157
158
    def __str__(self):
        return self.data.__str__()
    
    def __repr__(self):
        return '<distributed_data_object>\n'+self.data.__repr__()
    
159
    def __pos__(self):
160
        temp_d2o = self.copy_empty()
161
162
163
        temp_d2o.set_local_data(data = self.get_local_data())
        return temp_d2o
        
ultimanet's avatar
ultimanet committed
164
    def __neg__(self):
165
        temp_d2o = self.copy_empty()
ultimanet's avatar
ultimanet committed
166
167
168
        temp_d2o.set_local_data(data = self.get_local_data().__neg__()) 
        return temp_d2o
    
169
170
171
172
    def __abs__(self):
        temp_d2o = self.copy_empty()
        temp_d2o.set_local_data(data = self.get_local_data().__abs__()) 
        return temp_d2o
ultimanet's avatar
ultimanet committed
173
174
            
    def __builtin_helper__(self, operator, other):
175
        temp_d2o = self.copy_empty()
ultimanet's avatar
ultimanet committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        if isinstance(other, distributed_data_object):        
            temp_data = operator(other.get_local_data())
        else:
            temp_data = operator(other)
        temp_d2o.set_local_data(data=temp_data)
        return temp_d2o

    def __add__(self, other):
        return self.__builtin_helper__(self.get_local_data().__add__, other)

    def __radd__(self, other):
        return self.__builtin_helper__(self.get_local_data().__radd__, other)
    
    def __sub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__sub__, other)
    
    def __rsub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rsub__, other)
    
    def __isub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__isub__, other)
        
    def __div__(self, other):
        return self.__builtin_helper__(self.get_local_data().__div__, other)
    
    def __rdiv__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rdiv__, other)

    def __floordiv__(self, other):
        return self.__builtin_helper__(self.get_local_data().__floordiv__, other)
    
    def __rfloordiv__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rfloordiv__, other)
    
    def __mul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__mul__, other)
    
    def __rmul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rmul__, other)

    def __imul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__imul__, other)
    
    def __pow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__pow__, other)
 
    def __rpow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rpow__, other)

    def __ipow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__ipow__, other)
227
228
229
    
    def __len__(self):
        return self.shape[0]
230
    
231
232
233
    def dim(self):
        return np.prod(self.shape)
        
234
235
236
237
238
239
240
241
    def vdot(self, other):
        if isinstance(other, distributed_data_object):        
            other = other.get_local_data()
        local_vdot = np.vdot(self.get_local_data(), other)
        local_vdot_list = self.distributor._allgather(local_vdot)
        global_vdot = np.sum(local_vdot_list)
        return global_vdot
            
242
        
243
244
245
246
247
248
249
250
251
252
        """
        temp_d2o = self.copy_empty()
        if isinstance(other, distributed_data_object):        
            temp_data = operator(other.get_local_data())
        else:
            temp_data = operator(other)
        temp_d2o.set_local_data(data=temp_data)
        return temp_d2o
        """
    
ultimanet's avatar
ultimanet committed
253
254
255
256
257
258
    def __getitem__(self, key):
        return self.get_data(key)
    
    def __setitem__(self, key, data):
        self.set_data(data, key)
        
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    def _minmaxhelper(self, function, **kwargs):
        local = function(self.data, **kwargs)
        local_list = self.distributor._allgather(local)
        global_ = function(local_list, axis=0)
        return global_
        
    def amin(self, **kwargs):
        return self._minmaxhelper(np.amin, **kwargs)

    def nanmin(self, **kwargs):
        return self._minmaxhelper(np.nanmin, **kwargs)
        
    def amax(self, **kwargs):
        return self._minmaxhelper(np.amax, **kwargs)
    
    def nanmax(self, **kwargs):
        return self._minmaxhelper(np.nanmax, **kwargs)
        
    def mean(self, power=1):
        ## compute the local means and the weights for the mean-mean. 
        local_mean = np.mean(self.data**power)
        local_weight = np.prod(self.data.shape)
        ## collect the local means and cast the result to a ndarray
        local_mean_weight_list = self.distributor._allgather((local_mean, 
                                                              local_weight))
        local_mean_weight_list =np.array(local_mean_weight_list)   
        ## compute the denominator for the weighted mean-mean                                                           
        global_weight = np.sum(local_mean_weight_list[:,1])
        ## compute the numerator
        numerator = np.sum(local_mean_weight_list[:,0]*\
            local_mean_weight_list[:,1])
        global_mean = numerator/global_weight
        return global_mean

    def var(self):
        mean_of_the_square = self.mean(power=2)
        square_of_the_mean = self.mean()**2
        return mean_of_the_square - square_of_the_mean
    
    def std(self):
        return np.sqrt(self.var())
        
    def _argmin_argmax_flat_helper(self, function):
        local_argmin = function(self.data)
        local_argmin_value = self.data[np.unravel_index(local_argmin, 
                                                        self.data.shape)]
        globalized_local_argmin = self.distributor.globalize_flat_index(local_argmin)                                                       
        local_argmin_list = self.distributor._allgather((local_argmin_value, 
                                                         globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[('value', int),
                                                               ('index', int)])    
        return local_argmin_list
        
    def argmin_flat(self):
        local_argmin = np.argmin(self.data)
        local_argmin_value = self.data[np.unravel_index(local_argmin, 
                                                        self.data.shape)]
        globalized_local_argmin = self.distributor.globalize_flat_index(local_argmin)                                                       
        local_argmin_list = self.distributor._allgather((local_argmin_value, 
                                                         globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[('value', int),
                                                               ('index', int)])    
        local_argmin_list = np.sort(local_argmin_list, order=['value', 'index'])        
        return local_argmin_list[0][1]
    
    def argmax_flat(self):
        local_argmax = np.argmax(self.data)
        local_argmax_value = -self.data[np.unravel_index(local_argmax, 
                                                        self.data.shape)]
        globalized_local_argmax = self.distributor.globalize_flat_index(local_argmax)                                                       
        local_argmax_list = self.distributor._allgather((local_argmax_value, 
                                                         globalized_local_argmax))
        local_argmax_list = np.array(local_argmax_list, dtype=[('value', int),
                                                               ('index', int)])         
        return local_argmax_list[0][1]
        

    def argmin(self):    
        return np.unravel_index(self.argmin_flat(), self.shape)
    
    def argmax(self):
        return np.unravel_index(self.argmax_flat(), self.shape)
    
    def conjugate(self):
        temp_d2o = self.copy_empty()
        temp_data = np.conj(self.get_local_data())
        temp_d2o.set_local_data(temp_data)
        return temp_d2o

    
    def conj(self):
        return self.conjugate()      
        
    def median(self):
        nifty_core.about.warnings.cprint(\
            "WARNING: The current implementation of median is very expensive!")
        median = np.median(self.get_full_data())
        return median
        
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    def iscomplex(self):
        temp_d2o = self.copy_empty(dtype=bool)
        temp_d2o.set_local_data(np.iscomplex(self.data))
        return temp_d2o
    
    def isreal(self):
        temp_d2o = self.copy_empty(dtype=bool)
        temp_d2o.set_local_data(np.isreal(self.data))
        return temp_d2o
    
    def is_completely_real(self):
        local_realiness = np.all(self.isreal())
        global_realiness = self.distributor._allgather(local_realiness)
        return np.all(global_realiness)
    
373
    def set_local_data(self, data, copy=False):
ultimanet's avatar
ultimanet committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        """
            Stores data directly in the local data attribute. No distribution 
            is done. The shape of the data must fit the local data attributes
            shape.

            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be stored in the local data attribute.
            
            Returns
            -------
            None
        
        """
389
        self.hermitian = False
390
        self.data = np.array(data).astype(self.dtype, copy=copy)
ultimanet's avatar
ultimanet committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    
    def set_data(self, data, key, *args, **kwargs):
        """
            Stores the supplied data in the region which is specified by key. 
            The data is distributed according to the distribution strategy. If
            the individual nodes get different key-arguments. Their data is 
            processed one-by-one.
            
            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be distributed.
            key : int, slice, tuple of int or slice
                The key is the object which specifies the region, where data 
                will be stored in.                
            
            Returns
            -------
            None
        
        """
412
        self.hermitian = False
ultimanet's avatar
ultimanet committed
413
414
415
        (slices, sliceified) = self.__sliceify__(key)        
        self.distributor.disperse_data(self.data, self.__enfold__(data, sliceified), slices, *args, **kwargs)        
    
416
    def set_full_data(self, data, **kwargs):
ultimanet's avatar
ultimanet committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        """
            Distributes the supplied data to the nodes. The shape of data must 
            match the shape of the distributed_data_object.
            
            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be distributed.
            
            Notes
            -----
            set_full_data(foo) is equivalent to set_data(foo,slice(None)) but 
            faster.
        
            Returns
            -------
            None
        
        """
436
        self.hermitian = False
437
        self.data = self.distributor.distribute_data(data=data, **kwargs)
ultimanet's avatar
ultimanet committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
    

    def get_local_data(self, key=(slice(None),)):
        """
            Loads data directly from the local data attribute. No consolidation 
            is done. 

            Parameters
            ----------
            key : int, slice, tuple of int or slice
                The key which will be used to access the data. 
            
            Returns
            -------
            self.data[key] : numpy.ndarray
        
        """        
        return self.data[key]        
        
457
    def get_data(self, key, **kwargs):
ultimanet's avatar
ultimanet committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        """
            Loads data from the region which is specified by key. The data is 
            consolidated according to the distribution strategy. If the 
            individual nodes get different key-arguments, they get individual
            data. 
            
            Parameters
            ----------
        
            key : int, slice, tuple of int or slice
                The key is the object which specifies the region, where data 
                will be loaded from.                 
            
            Returns
            -------
            global_data[key] : numpy.ndarray
        
        """
476
477
        (slices, sliceified) = self.__sliceify__(key)
        result = self.distributor.collect_data(self.data, slices, **kwargs)        
ultimanet's avatar
ultimanet committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
        return self.__defold__(result, sliceified)
        
    
    
    def get_full_data(self, target_rank='all'):
        """
            Fully consolidates the distributed data. 
            
            Parameters
            ----------
            target_rank : 'all' (default), int *optional*
                If only one node should recieve the full data, it can be 
                specified here.
            
            Notes
            -----
            get_full_data() is equivalent to get_data(slice(None)) but 
            faster.
        
            Returns
            -------
            None
        """

        return self.distributor.consolidate_data(self.data, target_rank)

  
    def _get_distributor(self, distribution_strategy):
        '''
            Comments:
              - The distributor's get_data and set_data functions MUST be 
                supplied with a tuple of slice objects. In case that there was 
                a direct integer involved, the unfolding will be done by the
511
                helper functions __sliceify__, __enfold__ and __defold__.
ultimanet's avatar
ultimanet committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        '''
        
        distributor_dict={
            'fftw':     _fftw_distributor,
            'not':      _not_distributor
        }
        if not distributor_dict.has_key(distribution_strategy):
            raise TypeError(nifty_core.about._errors.cstring("ERROR: Unknown distribution strategy supplied."))
        return distributor_dict[distribution_strategy]
      
    def save(self, alias, path=None, overwriteQ=True):
        
        """
            Saves a distributed_data_object to disk utilizing h5py.
            
            Parameters
            ----------
            alias : string
                The name for the dataset which is saved within the hdf5 file.
         
            path : string *optional*
                The path to the hdf5 file. If no path is given, the alias is 
                taken as filename in the current path.
            
            overwriteQ : Boolean *optional*
                Specifies whether a dataset may be overwritten if it is already
                present in the given hdf5 file or not.
        """
        self.distributor.save_data(self.data, alias, path, overwriteQ)

    def load(self, alias, path=None):
        """
            Loads a distributed_data_object from disk utilizing h5py.
            
            Parameters
            ----------
            alias : string
                The name of the dataset which is loaded from the hdf5 file.
 
            path : string *optional*
                The path to the hdf5 file. If no path is given, the alias is 
                taken as filename in the current path.
        """
        self.data = self.distributor.load_data(alias, path)
           
    def __sliceify__(self, inp):
        sliceified = []
        result = []
        if isinstance(inp, tuple):
            x = inp
        else:
            x = (inp, )
        
        for i in range(len(x)):
            if isinstance(x[i], slice):
                result += [x[i], ]
                sliceified += [False, ]
            else:
                result += [slice(x[i], x[i]+1), ]
                sliceified += [True, ]
    
        return (tuple(result), sliceified)
                
                
    def __enfold__(self, in_data, sliceified):
        data = np.array(in_data, copy=False)    
        temp_shape = ()
        j=0
        for i in sliceified:
            if i == True:
                temp_shape += (1,)
            else:
                temp_shape += (data.shape[j],)
                j += 1
        ## take into account that the sliceified tuple may be too short, because 
        ## of a non-exaustive list of slices
        for i in range(len(data.shape)-j):
            temp_shape += (data.shape[j],)
            j += 1
            
        return data.reshape(temp_shape)
    
    def __defold__(self, data, sliceified):
        temp_slice = ()
        for i in sliceified:
            if i == True:
                temp_slice += (0,)
            else:
                temp_slice += (slice(None),)
        return data[temp_slice]

    

   
class _fftw_distributor(object):
607
608
    def __init__(self, global_data=None, global_shape=None, dtype=None, 
                 comm=MPI.COMM_WORLD, alias=None, path=None):
ultimanet's avatar
ultimanet committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
        
        if alias != None:
            file_path = path if path != None else alias 
            if found['h5py_parallel']:
                f = h5py.File(file_path, 'r', driver='mpio', comm=comm)
            else:
                f= h5py.File(file_path, 'r')        
            dset = f[alias]        

        
        if comm.rank == 0:        
            if alias != None:
                self.global_shape = dset.shape
            else:                
623
                if global_data == None or np.array(global_data).shape == ():
ultimanet's avatar
ultimanet committed
624
                    if global_shape == None:
625
626
                        raise TypeError(nifty_core.about._errors.\
                        cstring("ERROR: Neither data nor shape supplied!"))
ultimanet's avatar
ultimanet committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
                    else:
                        self.global_shape = global_shape
                else:
                    self.global_shape = global_data.shape


        else:
            self.global_shape = None
        
        
        self.global_shape = comm.bcast(self.global_shape, root = 0)
        self.global_shape = tuple(self.global_shape)
        
        if comm.rank == 0:        
            if alias != None:
                self.dtype = dset.dtype.type
            else:    
                if dtype != None:        
                    self.dtype = dtype
                elif global_data != None:
                    self.dtype = np.array(global_data).dtype.type
                else:
649
                    raise TypeError(nifty_core.about._errors.\
650
651
                    cstring("ERROR: Failed setting datatype. Neither data, "+\
                     "nor datatype supplied."))
ultimanet's avatar
ultimanet committed
652
653
654
655
656
657
658
659
660
        else:
            self.dtype=None
        self.dtype = comm.bcast(self.dtype, root=0)
        if alias != None:        
            f.close()        
        
        self._my_dtype_converter = dtype_converter()
        
        if not self._my_dtype_converter.known_np_Q(self.dtype):
661
662
            raise TypeError(nifty_core.about._errors.cstring(\
            "ERROR: The datatype "+str(self.dtype)+" is not known to mpi4py."))
ultimanet's avatar
ultimanet committed
663
664
665
666
667
668
669
670
671
672

        self.mpi_dtype  = self._my_dtype_converter.to_mpi(self.dtype)
        
        self._local_size = pyfftw.local_size(self.global_shape)
        self.local_start = self._local_size[2]
        self.local_end = self.local_start + self._local_size[1]
        self.local_length = self.local_end-self.local_start        
        self.local_shape = (self.local_length,) + tuple(self.global_shape[1:])
        self.local_dim = np.product(self.local_shape)
        self.local_dim_list = np.empty(comm.size, dtype=np.int)
673
674
        comm.Allgather([np.array(self.local_dim,dtype=np.int), MPI.INT],\
            [self.local_dim_list, MPI.INT])
ultimanet's avatar
ultimanet committed
675
676
        self.local_dim_offset = np.sum(self.local_dim_list[0:comm.rank])
        
677
678
679
        self.local_slice = np.array([self.local_start, self.local_end,\
            self.local_length, self.local_dim, self.local_dim_offset],\
            dtype=np.int)
ultimanet's avatar
ultimanet committed
680
681
682
        ## collect all local_slices 
        ## [start, stop, length=stop-start, dimension, dimension_offset]
        self.all_local_slices = np.empty((comm.size,5),dtype=np.int)
683
684
        comm.Allgather([np.array((self.local_slice,),dtype=np.int), MPI.INT],\
            [self.all_local_slices, MPI.INT])
ultimanet's avatar
ultimanet committed
685
        
686
        self.comm = comm
ultimanet's avatar
ultimanet committed
687
        
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
    def globalize_flat_index(self, index):
        return int(index)+self.local_dim_offset
        
    def globalize_index(self, index):
        index = np.array(index, dtype=np.int).flatten()
        if index.shape != (len(self.global_shape),):
            raise TypeError(nifty_core.about._errors.cstring("ERROR: Length\
                of index tuple does not match the array's shape!"))                 
        globalized_index = index
        globalized_index[0] = index[0] + self.local_start
        ## ensure that the globalized index list is within the bounds
        global_index_memory = globalized_index
        globalized_index = np.clip(globalized_index, 
                                   -np.array(self.global_shape),
                                    np.array(self.global_shape)-1)
        if np.any(global_index_memory != globalized_index):
            nifty_core.about.warnings.cprint("WARNING: Indices were clipped!")
        globalized_index = tuple(globalized_index)
        return globalized_index
    
    def _allgather(self, thing, comm=None):
        if comm == None:
            comm = self.comm            
        gathered_things = comm.allgather(thing)
        return gathered_things
    
    def distribute_data(self, data=None, comm = None, alias=None,
                        path=None, **kwargs):
ultimanet's avatar
ultimanet committed
716
717
718
719
720
        '''
        distribute data checks 
        - whether the data is located on all nodes or only on node 0
        - that the shape of 'data' matches the global_shape
        '''
721
722
        if comm == None:
            comm = self.comm            
723
724
725
726
        rank = comm.Get_rank()
        size = comm.Get_size()        
        local_data_available_Q = np.array((int(data != None), ))
        data_available_Q = np.empty(size,dtype=int)
727
728
        comm.Allgather([local_data_available_Q, MPI.INT], 
                       [data_available_Q, MPI.INT])        
729
730
        
        if data_available_Q[0]==False and found['h5py']:
ultimanet's avatar
ultimanet committed
731
732
733
734
735
736
737
            try: 
                file_path = path if path != None else alias 
                if found['h5py_parallel']:
                    f = h5py.File(file_path, 'r', driver='mpio', comm=comm)
                else:
                    f= h5py.File(file_path, 'r')        
                dset = f[alias]
738
739
                if dset.shape == self.global_shape and \
                 dset.dtype.type == self.dtype:
ultimanet's avatar
ultimanet committed
740
741
742
743
                    temp_data = dset[self.local_start:self.local_end]
                    f.close()
                    return temp_data
                else:
744
745
                    raise TypeError(nifty_core.about._errors.cstring("ERROR: \
                    Input data has the wrong shape or wrong dtype!"))                 
ultimanet's avatar
ultimanet committed
746
747
748
            except(IOError, AttributeError):
                pass
            
749
750
        if np.all(data_available_Q==False):
            return np.zeros(self.local_shape, dtype=self.dtype)
ultimanet's avatar
ultimanet committed
751
        ## if all nodes got data, we assume that it is the right data and 
752
753
        ## store it individually. If not, take the data on node 0 and scatter 
        ## it...
ultimanet's avatar
ultimanet committed
754
        if np.all(data_available_Q):
755
756
            return data[self.local_start:self.local_end].astype(self.dtype,\
                copy=False)    
757
758
759
760
        ## ... but only if node 0 has actually data!
        elif data_available_Q[0] == False:# or np.all(data_available_Q==False):
            return np.zeros(self.local_shape, dtype=self.dtype)
        
ultimanet's avatar
ultimanet committed
761
762
763
764
765
        else:
            if data == None:
                data = np.empty(self.global_shape)            
            if rank == 0:
                if np.all(data.shape != self.global_shape):
766
767
                    raise TypeError(nifty_core.about._errors.cstring(\
                        "ERROR: Input data has the wrong shape!"))
ultimanet's avatar
ultimanet committed
768
769
770
771
            ## Scatter the data!            
            _scattered_data = np.zeros(self.local_shape, dtype = self.dtype)
            _dim_list = self.all_local_slices[:,3]
            _dim_offset_list = self.all_local_slices[:,4]
772
773
            comm.Scatterv([data, _dim_list, _dim_offset_list, self.mpi_dtype],\
                [_scattered_data, self.mpi_dtype], root=0)
ultimanet's avatar
ultimanet committed
774
775
776
            return _scattered_data
        return None
    
777
778
    def _disperse_data_primitive(self, data, data_update, slice_objects,\
                                source_rank='all', comm=None):
779
780
        if comm == None:
            comm = self.comm            
781
782
        ## compute the part of the slice which is relevant for the 
        ## individual node      
ultimanet's avatar
ultimanet committed
783
        localized_start, localized_stop = self._backshift_and_decycle(
784
785
786
787
            slice_objects[0], self.local_start, self.local_end,\
                self.global_shape[0])
        local_slice = (slice(localized_start, localized_stop,\
                        slice_objects[0].step),) + slice_objects[1:]
ultimanet's avatar
ultimanet committed
788
789
790
791
792
        
        ## compute the parameter sets and list for the data splitting
        local_slice_shape = data[local_slice].shape        
        local_affected_data_length = local_slice_shape[0]
        local_affected_data_length_list=np.empty(comm.size, dtype=np.int)        
793
794
795
796
797
        comm.Allgather(\
            [np.array(local_affected_data_length, dtype=np.int), MPI.INT],\
            [local_affected_data_length_list, MPI.INT])        
        local_affected_data_length_offset_list = np.append([0],\
                            np.cumsum(local_affected_data_length_list)[:-1])
ultimanet's avatar
ultimanet committed
798
799
800
801
802
803
804
805
806
        
        
        if source_rank == 'all':
            ## only take the relevant part out of data_update and plug it into 
            ## data[local_slice]
            r = comm.rank
            o = local_affected_data_length_offset_list
            l = local_affected_data_length
            update_slice = (slice(o[r], o[r]+l),) 
807
808
            data[local_slice] = np.array(data_update[update_slice],\
                                    copy=False).astype(self.dtype)
ultimanet's avatar
ultimanet committed
809
810
811
812
            
        else:
            ## Scatterv the relevant part from the source_rank to the others 
            ## and plug it into data[local_slice]
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
            
            ## if the first slice object has a negative step size, the ordering 
            ## of the Scatterv function must be reversed         
            order = slice_objects[0].step
            if order == None:
                order = 1
            else:
                order = np.sign(order)

            local_affected_data_dim_list = \
                np.array(local_affected_data_length_list) *\
                    np.product(local_slice_shape[1:])                    

            local_affected_data_dim_offset_list = np.append([0],\
                np.cumsum(local_affected_data_dim_list[::order])[:-1])[::order]
                
            local_dispersed_data = np.zeros(local_slice_shape,\
                dtype=self.dtype)
            comm.Scatterv(\
                [np.array(data_update, copy=False).astype(self.dtype),\
                    local_affected_data_dim_list,\
                    local_affected_data_dim_offset_list, self.mpi_dtype],
ultimanet's avatar
ultimanet committed
835
836
837
838
839
840
841
                          [local_dispersed_data, self.mpi_dtype], 
                          root=source_rank)                            
            data[local_slice] = local_dispersed_data
        return None
        
    
    
842
843
    def disperse_data(self, data, data_update, slice_objects, comm=None,\
                        **kwargs):
844
845
        if comm == None:
            comm = self.comm            
ultimanet's avatar
ultimanet committed
846
847
848
849
850
        slice_objects_list = comm.allgather(slice_objects)
        ## check if all slices are the same. 
        if all(x == slice_objects_list[0] for x in slice_objects_list):
            ## in this case, the _disperse_data_primitive can simply be called 
            ##with target_rank = 'all'
851
852
853
854
            self._disperse_data_primitive(data=data, data_update=data_update,\
                slice_objects=slice_objects, source_rank='all', comm=comm)
        ## if the different nodes got different slices, disperse the data 
        ## individually
ultimanet's avatar
ultimanet committed
855
856
857
858
        else:
            i = 0        
            for temp_slices in slice_objects_list:
                ## make the collect_data call on all nodes            
859
860
861
                self._disperse_data_primitive(data=data,\
                    data_update=data_update, slice_objects=temp_slices,\
                    source_rank=i, comm=comm)
ultimanet's avatar
ultimanet committed
862
863
864
                i += 1
                 
        
865
866
867
868
    def _collect_data_primitive(self, data, slice_objects, target_rank='all', comm=None):
        if comm == None:
            comm = self.comm            
            
ultimanet's avatar
ultimanet committed
869
        localized_start, localized_stop = self._backshift_and_decycle(
870
            slice_objects[0], self.local_start, self.local_end, self.global_shape[0])
ultimanet's avatar
ultimanet committed
871
872
873
874
875
876
877
878
879
880
881
        local_slice = (slice(localized_start,localized_stop,slice_objects[0].step),)+slice_objects[1:]
        local_collected_data = np.ascontiguousarray(data[local_slice])

        local_collected_data_length = local_collected_data.shape[0]
        local_collected_data_length_list=np.empty(comm.size, dtype=np.int)        
        comm.Allgather([np.array(local_collected_data_length, dtype=np.int), MPI.INT], [local_collected_data_length_list, MPI.INT])        
             
        collected_data_length = np.sum(local_collected_data_length_list) 
        collected_data_shape = (collected_data_length,)+local_collected_data.shape[1:]
        local_collected_data_dim_list= np.array(local_collected_data_length_list) * np.product(local_collected_data.shape[1:])        
        
882
883
884
885
886
887
888
889
890
891
892
        ## if the first slice object has a negative step size, the ordering 
        ## of the Gatherv functions must be reversed         
        order = slice_objects[0].step
        if order == None:
            order = 1
        else:
            order = np.sign(order)
            
        local_collected_data_dim_offset_list = np.append([0],np.cumsum(local_collected_data_dim_list[::order])[:-1])[::order]

        local_collected_data_dim_offset_list = local_collected_data_dim_offset_list
ultimanet's avatar
ultimanet committed
893
        collected_data = np.empty(collected_data_shape, dtype=self.dtype)
894
        
ultimanet's avatar
ultimanet committed
895
896
897
898
899
900
901
902
903

        if target_rank == 'all':
            comm.Allgatherv([local_collected_data, self.mpi_dtype], 
                         [collected_data, local_collected_data_dim_list, local_collected_data_dim_offset_list, self.mpi_dtype])                
        else:
            comm.Gatherv([local_collected_data, self.mpi_dtype], 
                         [collected_data, local_collected_data_dim_list, local_collected_data_dim_offset_list, self.mpi_dtype], root=target_rank)                            
        return collected_data

904
905
906
    def collect_data(self, data, slice_objects, comm=None, **kwargs):
        if comm == None:
            comm = self.comm                    
ultimanet's avatar
ultimanet committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
        slice_objects_list = comm.allgather(slice_objects)
        ## check if all slices are the same. 
        if all(x == slice_objects_list[0] for x in slice_objects_list):
            ## in this case, the _collect_data_primitive can simply be called 
            ##with target_rank = 'all'
            return self._collect_data_primitive(data=data, slice_objects=slice_objects, target_rank='all', comm=comm)
        
        ## if the different nodes got different slices, collect the data individually
        i = 0        
        for temp_slices in slice_objects_list:
            ## make the collect_data call on all nodes            
            temp_data = self._collect_data_primitive(data=data, slice_objects=temp_slices, target_rank=i, comm=comm)
            ## save the result only on the pulling node            
            if comm.rank == i:
                individual_data = temp_data
            i += 1
        return individual_data
        
    
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
    def _backshift_and_decycle(self, slice_object, shifted_start, shifted_stop, global_length):
        ## Crop the start value
        if slice_object.start > global_length-1:
            slice_object = slice(global_length-1, slice_object.stop,
                                 slice_object.step)
                                 
        ## Reformulate negative indices                                  
        if slice_object.start < 0 and slice_object.start != None:
            temp_start = slice_object.start + global_length
            if temp_start < 0:
                raise ValueError(nifty_core.about._errors.cstring(\
                "ERROR: Index is out of bounds!"))
            slice_object = slice(temp_start, slice_object.stop,\
            slice_object.step) 

        if slice_object.stop < 0 and slice_object.stop != None:
            temp_stop = slice_object.stop + global_length
            if temp_stop < 0:
                raise ValueError(nifty_core.about._errors.cstring(\
                "ERROR: Index is out of bounds!"))
            slice_object = slice(slice_object.start, temp_stop,\
            slice_object.step) 
                
        ## initialize the step
ultimanet's avatar
ultimanet committed
950
951
952
953
        if slice_object.step == None:
            step = 1
        else:
            step = slice_object.step
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
        
        if step > 0:
            shift = shifted_start
            ## calculate the start index
            if slice_object.start == None:
                local_start = (-shift)%step ## step size compensation
            else:
                local_start = slice_object.start - shift
                ## if the local_start is negative, pull it up to zero
                local_start = local_start%step if local_start < 0 else local_start
            ## calculate the stop index
            if slice_object.stop == None:
                local_stop = None
            else:
                local_stop = slice_object.stop - shift
                ## if local_stop is negative, pull it up to zero
                local_stop = 0 if local_stop < 0 else local_stop
                
        else: # if step < 0
            step = -step
            local_length = shifted_stop - shifted_start
            ## calculate the start index. (Here, local_start > local_stop!)
            if slice_object.start == None:
                local_start = (local_length-1) -\
                    (global_length-shifted_stop)%step #stepsize compensation
            else:
                local_start = slice_object.start - shifted_start
                ## if the local_start is negative, pull it up to zero
                local_start = 0 if local_start < 0 else local_start                
                ## if the local_start is greater than the local length, pull
                ## it down 
                if local_start > local_length-1:
                    overhead = local_start - (local_length-1)
                    overhead = overhead - overhead%(-step)
                    local_start = local_start - overhead
            ## calculate the stop index
            if slice_object.stop == None:
                local_stop = None
            else:
                local_stop = slice_object.stop - shifted_start
                ## if local_stop is negative, pull it up to zero
                local_stop = 0 if local_stop < 0 else local_stop    
996
        ## Note: if start or stop are greater than the array length,
ultimanet's avatar
ultimanet committed
997
998
999
        ## numpy will automatically cut the index value down into the 
        ## array's range 
        return local_start, local_stop        
1000
1001
    
    
1002
1003
1004
    def consolidate_data(self, data, target_rank='all', comm = None):
        if comm == None:
            comm = self.comm            
ultimanet's avatar
ultimanet committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        _gathered_data = np.empty(self.global_shape, dtype=self.dtype)
        _dim_list = self.all_local_slices[:,3]
        _dim_offset_list = self.all_local_slices[:,4]
        if target_rank == 'all':
            comm.Allgatherv([data, self.mpi_dtype], 
                         [_gathered_data, _dim_list, _dim_offset_list, self.mpi_dtype])                
        else:
            comm.Gatherv([data, self.mpi_dtype], 
                         [_gathered_data, _dim_list, _dim_offset_list, self.mpi_dtype],
                         root=target_rank)
        return _gathered_data
    
    if found['h5py']:
1018
1019
1020
        def save_data(self, data, alias, path=None, overwriteQ=True, comm=None):
            if comm == None:
                comm = self.comm            
ultimanet's avatar
ultimanet committed
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
            ## if no path and therefore no filename was given, use the alias as filename        
            use_path = alias if path==None else path
            
            ## create the file-handle
            if found['h5py_parallel']:
                f = h5py.File(use_path, 'a', driver='mpio', comm=comm)
            else:
                f= h5py.File(use_path, 'a')
            ## check if dataset with name == alias already exists
            try: 
                f[alias]
                if overwriteQ == False: #if yes, and overwriteQ is set to False, raise an Error
                    raise KeyError(nifty_core.about._errors.cstring("ERROR: overwriteQ == False, but alias already in use!"))
                else: # if yes, remove the existing dataset
                    del f[alias]
            except(KeyError):
                pass
            
            ## create dataset
            dset = f.create_dataset(alias, shape=self.global_shape, dtype=self.dtype)
            ## write the data
            dset[self.local_start:self.local_end] = data
            ## close the file
            f.close()
        
1046
1047
1048
        def load_data(self, alias, path, comm=None):
            if comm == None:
                comm = self.comm            
ultimanet's avatar
ultimanet committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
            ## create the file-handle
            if found['h5py_parallel']:
                f = h5py.File(path, 'r', driver='mpio', comm=comm)
            else:
                f= h5py.File(path, 'r')        
            dset = f[alias]        
            ## check shape
            if dset.shape != self.global_shape:
                raise TypeError(nifty_core.about._errors.cstring("ERROR: The shape of the given dataset does not match the distributed_data_object."))
            ## check dtype
            if dset.dtype.type != self.dtype:
                raise TypeError(nifty_core.about._errors.cstring("ERROR: The datatype of the given dataset does not match the distributed_data_object."))
            ## if everything seems to fit, load the data
            data = dset[self.local_start:self.local_end]
            ## close the file
            f.close()
            return data
    else:
        def save_data(self, *args, **kwargs):
            raise ImportError(nifty_core.about._errors.cstring("ERROR: h5py was not imported")) 
        def load_data(self, *args, **kwargs):
            raise ImportError(nifty_core.about._errors.cstring("ERROR: h5py was not imported")) 
        
        
        
        

class _not_distributor(object):
    def __init__(self, global_data=None, global_shape=None, dtype=None, *args,  **kwargs):
        if dtype != None:        
            self.dtype = dtype
        elif global_data != None:
            self.dtype = np.array(global_data).dtype.type
            
1083
        if global_data != None and np.array(global_data).shape != ():
ultimanet's avatar
ultimanet committed
1084
1085
1086
1087
1088
            self.global_shape = np.array(global_data).shape
        elif global_shape != None:
            self.global_shape = global_shape
        else:
            raise TypeError(nifty_core.about._errors.cstring("ERROR: Neither data nor shape supplied!")) 
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
    
    def globalize_flat_index(self, index):
        return index
    
    def globalize_index(self, index):
        return index
    
    def _allgather(self, thing):
        return [thing,]
        
ultimanet's avatar
ultimanet committed
1099
    def distribute_data(self, data, **kwargs):
1100
        return np.array(data).astype(self.dtype, copy=False).reshape(self.global_shape)
ultimanet's avatar
ultimanet committed
1101
    
1102
    def disperse_data(self, data, data_update, key, **kwargs):
ultimanet's avatar
ultimanet committed
1103
1104
        data[key] = np.array(data_update, copy=False).astype(self.dtype)
                     
1105
1106
    def collect_data(self, data, slice_objects,  **kwargs):
        return data[slice_objects]
ultimanet's avatar
ultimanet committed
1107
        
1108
    def consolidate_data(self, data, **kwargs):
ultimanet's avatar
ultimanet committed
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
        return data





class dtype_converter:
    """
        NIFTY class for dtype conversion between python/numpy dtypes and MPI
        dtypes.
    """
    
    def __init__(self):
        pre_dict = [
                    #[, MPI_CHAR],
                    #[, MPI_SIGNED_CHAR],
1125
1126
                    #[, MPI_UNSIGNED_CHAR],
                    [np.bool, MPI.BYTE],
ultimanet's avatar
ultimanet committed
1127
1128
                    [np.int16, MPI.SHORT],
                    [np.uint16, MPI.UNSIGNED_SHORT],
1129
                    [np.uint32, MPI.UNSIGNED_INT],
ultimanet's avatar
ultimanet committed
1130
                    [np.int32, MPI.INT],
1131
                    [np.int, MPI.LONG],  
ultimanet's avatar
ultimanet committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
                    [np.int64, MPI.LONG],
                    [np.uint64, MPI.UNSIGNED_LONG],
                    [np.int64, MPI.LONG_LONG],
                    [np.uint64, MPI.UNSIGNED_LONG_LONG],
                    [np.float32, MPI.FLOAT],
                    [np.float, MPI.DOUBLE],
                    [np.float64, MPI.DOUBLE],
                    [np.float128, MPI.LONG_DOUBLE],
                    [np.complex64, MPI.COMPLEX],
                    [np.complex, MPI.DOUBLE_COMPLEX],
                    [np.complex128, MPI.DOUBLE_COMPLEX]]
                    
        to_mpi_pre_dict = np.array(pre_dict)
        to_mpi_pre_dict[:,0] = map(self.dictionize_np, to_mpi_pre_dict[:,0])
        self._to_mpi_dict = dict(to_mpi_pre_dict)
        
        to_np_pre_dict = np.array(pre_dict)[:,::-1]
        to_np_pre_dict[:,0] = map(self.dictionize_mpi, to_np_pre_dict[:,0])
        self._to_np_dict = dict(to_np_pre_dict)

    def dictionize_np(self, x):
        return frozenset(x.__dict__.items())
        
    def dictionize_mpi(self, x):
        return x.name
    
    def to_mpi(self, dtype):
        return self._to_mpi_dict[self.dictionize_np(dtype)]

    def to_np(self, dtype):
        return self._to_np_dict[self.dictionize_mpi(dtype)]
    
    def known_mpi_Q(self, dtype):
        return self._to_np_dict.has_key(self.dictionize_mpi(dtype))
    
    def known_np_Q(self, dtype):
        return self._to_mpi_dict.has_key(self.dictionize_np(dtype))

class test(object):
1171
    def __init__(self,x=None, *args, **kwargs):
ultimanet's avatar
ultimanet committed
1172
        self.x =x
1173
1174
        print args
        print kwargs
ultimanet's avatar
ultimanet committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
    @property
    def val(self):
        return self.x
    
    @val.setter
    def val(self, x):
        self.x = x


if __name__ == '__main__':    
    comm = MPI.COMM_WORLD
    rank = comm.rank
1187
1188
    if True:
    #if rank == 0:
1189
        x = np.arange(100).reshape((10,10)).astype(np.int)
1190
1191
1192
        #x = x**2
        #x = x[::-1,::-1] + x
        
1193
        #print x
ultimanet's avatar
ultimanet committed
1194
        #x = np.arange(3)
1195
1196


ultimanet's avatar
ultimanet committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
    else:
        x = None
    obj = distributed_data_object(global_data=x, distribution_strategy='fftw')
    
    
    #obj.load('myalias', 'mpitest.hdf5')
    if MPI.COMM_WORLD.rank==0:
        print ('rank', rank, vars(obj.distributor))
    MPI.COMM_WORLD.Barrier()
1206
    #print ('rank', rank, vars(obj))
ultimanet's avatar
ultimanet committed
1207
1208
1209
    
    MPI.COMM_WORLD.Barrier()
    temp_erg =obj.get_full_data(target_rank='all')
1210
    print ('rank', rank, 'full data', np.all(temp_erg == x), temp_erg.shape)
1211
1212
1213
1214
    #print ('rank', rank, ' local flat index: ', 1000, ' globalized: ', obj.distributor.globalize_flat_index(1000))    
    #temp_index= (80,80,666)    
    #print ('rank', rank, ' local index: ', temp_index, ' globalized: ', obj.distributor.globalize_index(temp_index)) 
    
1215

ultimanet's avatar
ultimanet committed
1216
    MPI.COMM_WORLD.Barrier()
1217
    sl = slice(13,1,-3)
ultimanet's avatar
ultimanet committed
1218
    if rank == 0:    
1219
1220
1221
        print ('erwuenscht', x[sl])
    print obj[sl]
    """
ultimanet's avatar
ultimanet committed
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
    sl = slice(1,2+rank,1)
    print ('slice', rank, sl, obj[sl,2])
    print obj[1:5:2,1:3]
    if rank == 0:
        sl = (slice(1,9,2), slice(1,5,2))
        d = [[111, 222],[333,444],[111, 222],[333,444]]
    else:
        sl = (slice(6,10,2), slice(1,5,2))
        d = [[555, 666],[777,888]]
    obj[sl] = d
    print obj.get_full_data()    
1233
   """